MOMENT-1-large-embedding-v0.1
This is an embedding model derived from AutonLab/MOMENT-1-large
How to use
from transformers import AutoConfig, AutoModel, AutoFeatureExtractor
model_name = "HachiML/MOMENT-1-large-embedding-v0.1"
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name, trust_remote_code=True)
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
print(device)
model.to(device)
hist_ndaq = pd.DataFrame("nasdaq_price_history.csv")
input_data = hist_ndaq[["Open", "High", "Low", "Close", "Volume"]].iloc[:512]
inputs = feature_extractor(input_data, return_tensors="pt")
# inputs = feature_extractor([input_data, input_data_2], return_tensors="pt") # You can also pass multiple data in a list.
inputs = inputs.to(device)
outputs = model(**inputs)
print(outputs.embeddings)
- Downloads last month
- 37
Inference API (serverless) does not yet support model repos that contain custom code.