layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3057
  • Answer: {'precision': 0.09480519480519481, 'recall': 0.09023485784919653, 'f1': 0.09246358454718177, 'number': 809}
  • Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
  • Question: {'precision': 0.4032534246575342, 'recall': 0.4422535211267606, 'f1': 0.4218540080609046, 'number': 1065}
  • Overall Precision: 0.2807
  • Overall Recall: 0.2730
  • Overall F1: 0.2768
  • Overall Accuracy: 0.5691

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.9048 1.0 10 1.8492 {'precision': 0.02683982683982684, 'recall': 0.07663782447466007, 'f1': 0.039756332157742866, 'number': 809} {'precision': 0.003424657534246575, 'recall': 0.008403361344537815, 'f1': 0.004866180048661801, 'number': 119} {'precision': 0.08558262014483213, 'recall': 0.12206572769953052, 'f1': 0.10061919504643962, 'number': 1065} 0.0468 0.0968 0.0631 0.2625
1.8261 2.0 20 1.7805 {'precision': 0.02488425925925926, 'recall': 0.05315203955500618, 'f1': 0.03389830508474576, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.11639344262295082, 'recall': 0.13333333333333333, 'f1': 0.12428884026258205, 'number': 1065} 0.0620 0.0928 0.0744 0.3314
1.7557 3.0 30 1.7197 {'precision': 0.018808777429467086, 'recall': 0.029666254635352288, 'f1': 0.02302158273381295, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.15336134453781514, 'recall': 0.13708920187793427, 'f1': 0.14476945959345563, 'number': 1065} 0.0763 0.0853 0.0805 0.3579
1.7002 4.0 40 1.6648 {'precision': 0.019029495718363463, 'recall': 0.024721878862793572, 'f1': 0.02150537634408602, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.19602977667493796, 'recall': 0.14835680751173708, 'f1': 0.16889363976483165, 'number': 1065} 0.0959 0.0893 0.0925 0.3775
1.645 5.0 50 1.6121 {'precision': 0.019801980198019802, 'recall': 0.024721878862793572, 'f1': 0.021990104452996154, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.22172452407614782, 'recall': 0.18591549295774648, 'f1': 0.20224719101123598, 'number': 1065} 0.1146 0.1094 0.1119 0.4091
1.5951 6.0 60 1.5596 {'precision': 0.029411764705882353, 'recall': 0.037082818294190356, 'f1': 0.032804811372334604, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.23694779116465864, 'recall': 0.2215962441314554, 'f1': 0.2290150412421155, 'number': 1065} 0.1319 0.1335 0.1327 0.4421
1.5418 7.0 70 1.5109 {'precision': 0.040755467196819085, 'recall': 0.05067985166872682, 'f1': 0.04517906336088154, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.27926267281105993, 'recall': 0.28450704225352114, 'f1': 0.2818604651162791, 'number': 1065} 0.1645 0.1726 0.1685 0.4719
1.4954 8.0 80 1.4653 {'precision': 0.050359712230215826, 'recall': 0.06056860321384425, 'f1': 0.05499438832772166, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3016421780466724, 'recall': 0.3276995305164319, 'f1': 0.31413141314131415, 'number': 1065} 0.1869 0.1997 0.1931 0.4973
1.4558 9.0 90 1.4245 {'precision': 0.054140127388535034, 'recall': 0.0630407911001236, 'f1': 0.05825242718446602, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3177966101694915, 'recall': 0.352112676056338, 'f1': 0.3340757238307349, 'number': 1065} 0.2008 0.2137 0.2070 0.5168
1.4126 10.0 100 1.3893 {'precision': 0.07432432432432433, 'recall': 0.0815822002472188, 'f1': 0.07778432527990571, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.33669185558354325, 'recall': 0.37652582159624415, 'f1': 0.3554964539007092, 'number': 1065} 0.2246 0.2343 0.2294 0.5339
1.3759 11.0 110 1.3592 {'precision': 0.08333333333333333, 'recall': 0.0865265760197775, 'f1': 0.08489993935718616, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3618807724601176, 'recall': 0.40469483568075115, 'f1': 0.38209219858156024, 'number': 1065} 0.2467 0.2514 0.2490 0.5470
1.3663 12.0 120 1.3358 {'precision': 0.08531994981179424, 'recall': 0.08405438813349815, 'f1': 0.08468244084682441, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.37638062871707734, 'recall': 0.415962441314554, 'f1': 0.39518287243532557, 'number': 1065} 0.2589 0.2564 0.2576 0.5545
1.3323 13.0 130 1.3192 {'precision': 0.0916030534351145, 'recall': 0.08899876390605686, 'f1': 0.090282131661442, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.38649789029535864, 'recall': 0.4300469483568075, 'f1': 0.40711111111111115, 'number': 1065} 0.2689 0.2659 0.2674 0.5635
1.3268 14.0 140 1.3094 {'precision': 0.09585492227979274, 'recall': 0.09147095179233622, 'f1': 0.09361163820366855, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3974358974358974, 'recall': 0.43661971830985913, 'f1': 0.4161073825503355, 'number': 1065} 0.2775 0.2704 0.2740 0.5671
1.2988 15.0 150 1.3057 {'precision': 0.09480519480519481, 'recall': 0.09023485784919653, 'f1': 0.09246358454718177, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4032534246575342, 'recall': 0.4422535211267606, 'f1': 0.4218540080609046, 'number': 1065} 0.2807 0.2730 0.2768 0.5691

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Haios141/layoutlm-funsd

Finetuned
(145)
this model