|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- LunarLander-v2 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: PPO |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: LunarLander-v2 |
|
type: LunarLander-v2 |
|
metrics: |
|
- type: mean_reward |
|
value: 261.85 +/- 46.42 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
## My First RL Project |
|
# **PPO** Agent playing **LunarLander-v2** |
|
This is a trained model of a **PPO** agent playing **LunarLander-v2** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage |
|
code was done with gym env and stable-basline3 libraray |
|
|
|
|
|
```python |
|
#Dependencies and stuff |
|
!apt install swig cmake |
|
!pip install -r https://raw.githubusercontent.com/huggingface/deep-rl-class/main/notebooks/unit1/requirements-unit1.txt |
|
!sudo apt-get update |
|
!apt install python3-opengl |
|
!apt install ffmpeg |
|
!apt install xvfb |
|
!pip3 install pyvirtualdisplay |
|
# restart colab |
|
import os |
|
os.kill(os.getpid(), 9) |
|
#display |
|
from pyvirtualdisplay import Display |
|
|
|
virtual_display = Display(visible=0, size=(1400, 900)) |
|
virtual_display.start() |
|
# import libraries |
|
import gymnasium as gym |
|
|
|
from huggingface_sb3 import load_from_hub, package_to_hub |
|
from huggingface_hub import ( |
|
notebook_login, |
|
) |
|
|
|
from stable_baselines3 import PPO |
|
from stable_baselines3.common.env_util import make_vec_env |
|
from stable_baselines3.common.evaluation import evaluate_policy |
|
from stable_baselines3.common.monitor import Monitor |
|
|
|
# Create environment |
|
env = gym.make('LunarLander-v2') |
|
|
|
#Define PPO |
|
model = PPO( |
|
policy="MlpPolicy", |
|
env=env, |
|
n_steps=1024, |
|
batch_size=64, |
|
n_epochs=4, |
|
gamma=0.999, |
|
gae_lambda=0.98, |
|
ent_coef=0.01, |
|
verbose=1, |
|
) |
|
# Train the agent |
|
model.learn(total_timesteps=1000000) |
|
|
|
# Save the model |
|
model_name = "ppo-LunarLander-v2" |
|
model.save(model_name) |
|
|
|
#evaluate model |
|
eval_env = Monitor(gym.make("LunarLander-v2")) |
|
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) |
|
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") |
|
|
|
# create a video (for colab) |
|
|
|
import gymnasium as gym |
|
from stable_baselines3 import PPO |
|
from IPython.display import Video, display |
|
import os |
|
|
|
env = gym.make('LunarLander-v2') |
|
|
|
model_name = "ppo-LunarLander-v2" |
|
model = PPO.load(model_name) |
|
|
|
def record_video(env, model, video_length=500, prefix="ppo-lunarlander"): |
|
env = gym.wrappers.RecordVideo(env, video_folder=prefix, episode_trigger=lambda x: x == 0) |
|
obs = env.reset() |
|
for _ in range(video_length): |
|
action, _ = model.predict(obs) |
|
obs, _, done, _ = env.step(action) |
|
if done: |
|
obs = env.reset() |
|
env.close() |
|
|
|
record_video(env, model, video_length=500, prefix="ppo-lunarlander") |
|
|
|
video_path = "ppo-lunarlander/rl-video-episode-0.mp4" |
|
display(Video(video_path)) |
|
... |
|
``` |