openai/whisper-medium

This model is a fine-tuned version of openai/whisper-medium on the Hanhpt23/GermanMed-full dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8743
  • Wer: 26.2573

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.7043 1.0 194 0.7433 43.3508
0.4383 2.0 388 0.7578 37.6118
0.28 3.0 582 0.8223 39.6380
0.188 4.0 776 0.8428 35.1538
0.1479 5.0 970 0.8755 32.6751
0.1263 6.0 1164 0.8562 31.2249
0.0808 7.0 1358 0.8797 31.5129
0.063 8.0 1552 0.9294 33.3333
0.0469 9.0 1746 0.9285 35.4315
0.0464 10.0 1940 0.9110 29.5176
0.0302 11.0 2134 0.9158 33.4568
0.0355 12.0 2328 0.9420 31.9243
0.0167 13.0 2522 0.9098 30.6284
0.0119 14.0 2716 0.8894 29.7645
0.0092 15.0 2910 0.8861 26.9567
0.0034 16.0 3104 0.8764 26.9670
0.0007 17.0 3298 0.8692 26.2573
0.0007 18.0 3492 0.8724 26.6584
0.0002 19.0 3686 0.8739 26.2265
0.0002 20.0 3880 0.8743 26.2573

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
20
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-medium-Encode-GermanMed-full

Finetuned
(549)
this model

Space using Hanhpt23/whisper-medium-Encode-GermanMed-full 1