File size: 2,584 Bytes
f7d61ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
language:
- de
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: openai/whisper-medium
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openai/whisper-medium

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Hanhpt23/GermanMed-full dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8743
- Wer: 26.2573

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.7043        | 1.0   | 194  | 0.7433          | 43.3508 |
| 0.4383        | 2.0   | 388  | 0.7578          | 37.6118 |
| 0.28          | 3.0   | 582  | 0.8223          | 39.6380 |
| 0.188         | 4.0   | 776  | 0.8428          | 35.1538 |
| 0.1479        | 5.0   | 970  | 0.8755          | 32.6751 |
| 0.1263        | 6.0   | 1164 | 0.8562          | 31.2249 |
| 0.0808        | 7.0   | 1358 | 0.8797          | 31.5129 |
| 0.063         | 8.0   | 1552 | 0.9294          | 33.3333 |
| 0.0469        | 9.0   | 1746 | 0.9285          | 35.4315 |
| 0.0464        | 10.0  | 1940 | 0.9110          | 29.5176 |
| 0.0302        | 11.0  | 2134 | 0.9158          | 33.4568 |
| 0.0355        | 12.0  | 2328 | 0.9420          | 31.9243 |
| 0.0167        | 13.0  | 2522 | 0.9098          | 30.6284 |
| 0.0119        | 14.0  | 2716 | 0.8894          | 29.7645 |
| 0.0092        | 15.0  | 2910 | 0.8861          | 26.9567 |
| 0.0034        | 16.0  | 3104 | 0.8764          | 26.9670 |
| 0.0007        | 17.0  | 3298 | 0.8692          | 26.2573 |
| 0.0007        | 18.0  | 3492 | 0.8724          | 26.6584 |
| 0.0002        | 19.0  | 3686 | 0.8739          | 26.2265 |
| 0.0002        | 20.0  | 3880 | 0.8743          | 26.2573 |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1