openai/whisper-medium

This model is a fine-tuned version of openai/whisper-medium on the pphuc25/EngMed dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3644
  • Wer: 27.0471

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.9369 1.0 3491 1.0416 45.5524
0.6193 2.0 6982 0.9804 37.6418
0.3774 3.0 10473 0.9933 42.7926
0.268 4.0 13964 1.0419 34.9683
0.2095 5.0 17455 1.1003 32.7617
0.1284 6.0 20946 1.1458 31.5065
0.0925 7.0 24437 1.1670 31.7984
0.0932 8.0 27928 1.2259 30.5314
0.0612 9.0 31419 1.2532 32.1152
0.0489 10.0 34910 1.2556 30.6472
0.0313 11.0 38401 1.3001 30.0870
0.0241 12.0 41892 1.2982 30.4427
0.0237 13.0 45383 1.3242 29.9322
0.0186 14.0 48874 1.3390 28.2798
0.0063 15.0 52365 1.3588 29.5764
0.0041 16.0 55856 1.3580 28.5777
0.0014 17.0 59347 1.3533 27.6901
0.0014 18.0 62838 1.3609 28.0742
0.0001 19.0 66329 1.3597 28.3330
0.0002 20.0 69820 1.3644 27.0471

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
20
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-medium-Encode-engmed

Finetuned
(549)
this model