openai/whisper-medium

This model is a fine-tuned version of openai/whisper-medium on the Hanhpt23/GermanMed-full dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6710
  • Wer: 19.0888

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.5095 1.0 194 0.5514 29.2194
0.2795 2.0 388 0.5479 27.2138
0.177 3.0 582 0.5744 24.6323
0.1321 4.0 776 0.6230 26.0311
0.0829 5.0 970 0.6206 22.8222
0.0865 6.0 1164 0.6116 22.9456
0.0681 7.0 1358 0.6316 23.9638
0.0536 8.0 1552 0.6182 22.3696
0.0289 9.0 1746 0.6302 21.3309
0.0228 10.0 1940 0.6738 19.5002
0.0178 11.0 2134 0.6600 19.7367
0.011 12.0 2328 0.6765 20.1172
0.0073 13.0 2522 0.6586 21.3823
0.0042 14.0 2716 0.6455 18.9036
0.004 15.0 2910 0.6595 19.0785
0.0003 16.0 3104 0.6635 18.9036
0.0019 17.0 3298 0.6694 19.1093
0.0001 18.0 3492 0.6747 19.0270
0.0001 19.0 3686 0.6708 19.0990
0.0001 20.0 3880 0.6710 19.0888

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
22
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-medium-GermanMed-full

Finetuned
(549)
this model