openai/whisper-medium

This model is a fine-tuned version of openai/whisper-medium on the pphuc25/ChiMed dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1592
  • Wer: 80.9430

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.6574 1.0 161 0.8255 104.1257
0.3457 2.0 322 0.8750 90.9627
0.2273 3.0 483 0.9033 84.4794
0.1392 4.0 644 0.9562 81.3360
1.8629 5.0 805 1.3537 127.1120
0.0816 6.0 966 1.0682 88.0157
0.0722 7.0 1127 1.0343 100.0
0.0494 8.0 1288 1.0605 84.4794
0.0405 9.0 1449 1.0960 86.6405
0.0403 10.0 1610 1.1383 87.4263
0.0216 11.0 1771 1.0693 88.9980
0.0166 12.0 1932 1.0588 88.0157
0.0126 13.0 2093 1.1074 79.1749
0.0083 14.0 2254 1.1398 83.6935
0.0075 15.0 2415 1.1451 88.6051
0.0019 16.0 2576 1.1521 85.0688
0.0006 17.0 2737 1.1442 81.1395
0.0007 18.0 2898 1.1521 82.3183
0.0003 19.0 3059 1.1581 80.9430
0.0002 20.0 3220 1.1592 80.9430

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
19
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Hanhpt23/whisper-medium-chinesemed-full

Finetuned
(548)
this model