AfriSenti Nigerian Pidgin Sentiment Regressor Description

Takes a text and predicts the sentiment value between -1 (Negative) to 1 (Positive) with 0 being Neutral.

Regression Value Description:

Value Sentiment
-1 Negative
0 Neutral
1 Positive

How to Get Started with the Model

Use the code below to get started with the model.

import math
import torch
import pandas as pd
from transformers import AutoModelForSequenceClassification, AutoTokenizer

BATCH_SIZE = 32
ds = pd.read_csv('test.csv')
BASE_MODEL = 'HausaNLP/afrisenti-pcm-regression'

device = 'cuda' if torch.cuda.is_available() else 'cpu'

tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
model = AutoModelForSequenceClassification.from_pretrained(BASE_MODEL)

nb_batches = math.ceil(len(ds)/BATCH_SIZE)
y_preds = []

for i in range(nb_batches):
  input_texts = ds[i * BATCH_SIZE: (i+1) * BATCH_SIZE]["tweet"]
  encoded = tokenizer(input_texts, truncation=True, padding="max_length", max_length=256, return_tensors="pt").to(device)
  y_preds += model(**encoded).logits.reshape(-1).tolist()

df = pd.DataFrame([ds['tweet'], ds['label'], y_preds], ["Text", "Label", "Prediction"]).T
df.to_csv('predictions.csv', index=False)
Downloads last month
25
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.