rationale_model_e15 / README.md
Heejindo's picture
aes_sft
6ff1a5b verified
---
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-1B
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: rationale_model_e15
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# rationale_model_e15
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1070
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 2.1363 | 0.0954 | 500 | 2.1185 |
| 1.7868 | 0.1908 | 1000 | 2.1070 |
| 1.5132 | 0.2862 | 1500 | 2.1743 |
| 1.238 | 0.3815 | 2000 | 2.2694 |
| 0.9723 | 0.4769 | 2500 | 2.3214 |
| 0.7249 | 0.5723 | 3000 | 2.4423 |
| 0.5657 | 0.6677 | 3500 | 2.5636 |
| 0.4404 | 0.7631 | 4000 | 2.6851 |
| 0.3192 | 0.8585 | 4500 | 2.8630 |
| 0.2676 | 0.9538 | 5000 | 2.9741 |
| 0.2057 | 1.0492 | 5500 | 3.0958 |
| 0.1792 | 1.1446 | 6000 | 3.1219 |
| 0.1691 | 1.2400 | 6500 | 3.1735 |
| 0.1597 | 1.3354 | 7000 | 3.2299 |
| 0.1516 | 1.4308 | 7500 | 3.2997 |
| 0.1422 | 1.5261 | 8000 | 3.2759 |
| 0.1372 | 1.6215 | 8500 | 3.3557 |
| 0.1301 | 1.7169 | 9000 | 3.4023 |
| 0.1229 | 1.8123 | 9500 | 3.4617 |
| 0.1183 | 1.9077 | 10000 | 3.4668 |
| 0.1119 | 2.0031 | 10500 | 3.5609 |
| 0.0924 | 2.0984 | 11000 | 3.5975 |
| 0.0926 | 2.1938 | 11500 | 3.6429 |
| 0.089 | 2.2892 | 12000 | 3.6586 |
| 0.0881 | 2.3846 | 12500 | 3.6920 |
| 0.0861 | 2.4800 | 13000 | 3.7656 |
| 0.0835 | 2.5754 | 13500 | 3.7939 |
| 0.0803 | 2.6707 | 14000 | 3.8398 |
| 0.0797 | 2.7661 | 14500 | 3.8909 |
| 0.0774 | 2.8615 | 15000 | 3.9238 |
| 0.0759 | 2.9569 | 15500 | 3.9394 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.3.0
- Datasets 2.14.4
- Tokenizers 0.20.3