This model was converted to OpenVINO from Qwen/Qwen2.5-0.5B-Instruct
using optimum-intel
via the export space.
First make sure you have optimum-intel installed:
pip install optimum[openvino]
To load your model you can do as follows: In huggingface space app.py
import gradio as gr
from huggingface_hub import InferenceClient
from optimum.intel import OVModelForCausalLM
from transformers import AutoTokenizer, pipeline
# 載入模型和標記器
model_id = "HelloSun/Qwen2.5-0.5B-Instruct-openvino"
model = OVModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# 建立生成管道
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
def respond(message, history):
# 將當前訊息與歷史訊息合併
#input_text = message if not history else history[-1]["content"] + " " + message
input_text = message
# 獲取模型的回應
response = pipe(input_text, max_length=500, truncation=True, num_return_sequences=1)
reply = response[0]['generated_text']
# 返回新的消息格式
print(f"Message: {message}")
print(f"Reply: {reply}")
return reply
# 設定 Gradio 的聊天界面
demo = gr.ChatInterface(fn=respond, title="Chat with Qwen(通義千問) 2.5-0.5B", description="與 HelloSun/Qwen2.5-0.5B-Instruct-openvino 聊天!", type='messages')
if __name__ == "__main__":
demo.launch()
requirements.txt
huggingface_hub==0.25.2
optimum[openvino]
- Downloads last month
- 260
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.