|
--- |
|
library_name: transformers |
|
language: |
|
- be |
|
- bg |
|
- bs |
|
- cs |
|
- csb |
|
- cu |
|
- dsb |
|
- en |
|
- hr |
|
- hsb |
|
- mk |
|
- orv |
|
- pl |
|
- ru |
|
- rue |
|
- sh |
|
- sk |
|
- sl |
|
- sr |
|
- szl |
|
- uk |
|
|
|
tags: |
|
- translation |
|
- opus-mt-tc-bible |
|
|
|
license: apache-2.0 |
|
model-index: |
|
- name: opus-mt-tc-bible-big-sla-en |
|
results: |
|
- task: |
|
name: Translation multi-eng |
|
type: translation |
|
args: multi-eng |
|
dataset: |
|
name: tatoeba-test-v2020-07-28-v2023-09-26 |
|
type: tatoeba_mt |
|
args: multi-eng |
|
metrics: |
|
- name: BLEU |
|
type: bleu |
|
value: 55.6 |
|
- name: chr-F |
|
type: chrf |
|
value: 0.70473 |
|
--- |
|
# opus-mt-tc-bible-big-sla-en |
|
|
|
## Table of Contents |
|
- [Model Details](#model-details) |
|
- [Uses](#uses) |
|
- [Risks, Limitations and Biases](#risks-limitations-and-biases) |
|
- [How to Get Started With the Model](#how-to-get-started-with-the-model) |
|
- [Training](#training) |
|
- [Evaluation](#evaluation) |
|
- [Citation Information](#citation-information) |
|
- [Acknowledgements](#acknowledgements) |
|
|
|
## Model Details |
|
|
|
Neural machine translation model for translating from Slavic languages (sla) to English (en). |
|
|
|
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). |
|
**Model Description:** |
|
- **Developed by:** Language Technology Research Group at the University of Helsinki |
|
- **Model Type:** Translation (transformer-big) |
|
- **Release**: 2024-08-17 |
|
- **License:** Apache-2.0 |
|
- **Language(s):** |
|
- Source Language(s): bel bos bul ces chu cnr csb dsb hbs hrv hsb mkd orv pol rue rus slk slv srp szl ukr |
|
- Target Language(s): eng |
|
- **Original Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/sla-eng/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip) |
|
- **Resources for more information:** |
|
- [OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/sla-eng/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-17) |
|
- [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) |
|
- [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) |
|
- [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/) |
|
- [HPLT bilingual data v1 (as part of the Tatoeba Translation Challenge dataset)](https://hplt-project.org/datasets/v1) |
|
- [A massively parallel Bible corpus](https://aclanthology.org/L14-1215/) |
|
|
|
## Uses |
|
|
|
This model can be used for translation and text-to-text generation. |
|
|
|
## Risks, Limitations and Biases |
|
|
|
**CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** |
|
|
|
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). |
|
|
|
## How to Get Started With the Model |
|
|
|
A short example code: |
|
|
|
```python |
|
from transformers import MarianMTModel, MarianTokenizer |
|
|
|
src_text = [ |
|
"Nie winię ciebie.", |
|
"Так это по-немецки сказать нельзя." |
|
] |
|
|
|
model_name = "pytorch-models/opus-mt-tc-bible-big-sla-en" |
|
tokenizer = MarianTokenizer.from_pretrained(model_name) |
|
model = MarianMTModel.from_pretrained(model_name) |
|
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) |
|
|
|
for t in translated: |
|
print( tokenizer.decode(t, skip_special_tokens=True) ) |
|
|
|
# expected output: |
|
# I don't blame you. |
|
# You can't say that in German. |
|
``` |
|
|
|
You can also use OPUS-MT models with the transformers pipelines, for example: |
|
|
|
```python |
|
from transformers import pipeline |
|
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-sla-en") |
|
print(pipe("Nie winię ciebie.")) |
|
|
|
# expected output: I don't blame you. |
|
``` |
|
|
|
## Training |
|
|
|
- **Data**: opusTCv20230926max50+bt+jhubc ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) |
|
- **Pre-processing**: SentencePiece (spm32k,spm32k) |
|
- **Model Type:** transformer-big |
|
- **Original MarianNMT Model**: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/sla-eng/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.zip) |
|
- **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) |
|
|
|
## Evaluation |
|
|
|
* [Model scores at the OPUS-MT dashboard](https://opus.nlpl.eu/dashboard/index.php?pkg=opusmt&test=all&scoreslang=all&chart=standard&model=Tatoeba-MT-models/sla-eng/opusTCv20230926max50%2Bbt%2Bjhubc_transformer-big_2024-08-17) |
|
* test set translations: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/sla-eng/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.test.txt) |
|
* test set scores: [opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/sla-eng/opusTCv20230926max50+bt+jhubc_transformer-big_2024-08-17.eval.txt) |
|
* benchmark results: [benchmark_results.txt](benchmark_results.txt) |
|
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip) |
|
|
|
| langpair | testset | chr-F | BLEU | #sent | #words | |
|
|----------|---------|-------|-------|-------|--------| |
|
| multi-eng | tatoeba-test-v2020-07-28-v2023-09-26 | 0.70473 | 55.6 | 10000 | 74777 | |
|
|
|
## Citation Information |
|
|
|
* Publications: [Democratizing neural machine translation with OPUS-MT](https://doi.org/10.1007/s10579-023-09704-w) and [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) |
|
|
|
```bibtex |
|
@article{tiedemann2023democratizing, |
|
title={Democratizing neural machine translation with {OPUS-MT}}, |
|
author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami}, |
|
journal={Language Resources and Evaluation}, |
|
number={58}, |
|
pages={713--755}, |
|
year={2023}, |
|
publisher={Springer Nature}, |
|
issn={1574-0218}, |
|
doi={10.1007/s10579-023-09704-w} |
|
} |
|
|
|
@inproceedings{tiedemann-thottingal-2020-opus, |
|
title = "{OPUS}-{MT} {--} Building open translation services for the World", |
|
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, |
|
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", |
|
month = nov, |
|
year = "2020", |
|
address = "Lisboa, Portugal", |
|
publisher = "European Association for Machine Translation", |
|
url = "https://aclanthology.org/2020.eamt-1.61", |
|
pages = "479--480", |
|
} |
|
|
|
@inproceedings{tiedemann-2020-tatoeba, |
|
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", |
|
author = {Tiedemann, J{\"o}rg}, |
|
booktitle = "Proceedings of the Fifth Conference on Machine Translation", |
|
month = nov, |
|
year = "2020", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2020.wmt-1.139", |
|
pages = "1174--1182", |
|
} |
|
``` |
|
|
|
## Acknowledgements |
|
|
|
The work is supported by the [HPLT project](https://hplt-project.org/), funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland, and the [EuroHPC supercomputer LUMI](https://www.lumi-supercomputer.eu/). |
|
|
|
## Model conversion info |
|
|
|
* transformers version: 4.45.1 |
|
* OPUS-MT git hash: 0882077 |
|
* port time: Tue Oct 8 22:44:35 EEST 2024 |
|
* port machine: LM0-400-22516.local |
|
|