CamemBERT LUPAN (Local Urban Plans And Natural risks)
Overview
In France, urban planning and natural risk management operate the Local Land Plans (PLU – Plan Local d'Urbanisme) and the Natural risk prevention plans (PPRn – Plan de Prévention des Risques naturels) containing land use rules. To facilitate automatic extraction of the rules, we manually annotated a number of those documents concerning Montpellier, a rapidly evolving agglomeration exposed to natural risks, then fine-tuned a model.
This model classifies input text in French to determine if it contains an urban planning rule. It outputs one of 4 classes: Verifiable (indicating the possibility of verification with satellite images), Non-verifiable (indicating impossibility of verification with satellite images), Informative (containing non-strict rules in the form of recommendations), and Not pertinent (absence of any of the above rules). For better quality results, it is recommended to add a title and a subtitle to each textual input.
For more details please refer to our article: https://www.nature.com/articles/s41597-023-02705-y
Training and evaluation data
The model is fine-tuned on top of CamemBERT using our corpus: https://huggingface.co/datasets/Herelles/lupan
This is the first corpus in the French language in the fields of urban planning and natural risk management.
Example of use
Attention: to run this code you need to have intalled transformers
, torch
and numpy
. You can do it with pip install transformers torch numpy
Load necessary libraries:
from transformers import CamembertTokenizer, CamembertForSequenceClassification
import torch
import numpy as np
Define tokenizer:
tokenizer = CamembertTokenizer.from_pretrained("camembert-base")
Define the model:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = CamembertForSequenceClassification.from_pretrained("herelles/camembert-base-lupan")
model.to(device)
Define segment to predict:
new_segment = '''Article 1 : Occupations ou utilisations du sol interdites
1) Dans l’ensemble de la zone sont interdits :
Les constructions destinées à l’habitation ne dépendant pas d’une exploitation agricole autres
que celles visées à l’article 2 paragraphe 1).'''
Get the prediction:
test_ids = []
test_attention_mask = []
# Apply the tokenizer
encoding = tokenizer(new_segment, padding="longest", return_tensors="pt")
# Extract IDs and Attention Mask
test_ids.append(encoding['input_ids'])
test_attention_mask.append(encoding['attention_mask'])
test_ids = torch.cat(test_ids, dim = 0)
test_attention_mask = torch.cat(test_attention_mask, dim = 0)
# Forward pass, calculate logit predictions
with torch.no_grad():
output = model(test_ids.to(device), token_type_ids = None, attention_mask = test_attention_mask.to(device))
prediction = np.argmax(output.logits.cpu().numpy()).flatten().item()
if prediction == 0:
pred_label = 'Not pertinent'
elif prediction == 1:
pred_label = 'Pertinent (Soft)'
elif prediction == 2:
pred_label = 'Pertinent (Strict, Non-verifiable)'
elif prediction == 3:
pred_label = 'Pertinent (Strict, Verifiable)'
print('Input text: ', new_segment)
print('\n\nPredicted Class: ', pred_label)
Online demo
Citation
To cite the data set please use:
@article{koptelov2023manually,
title={A manually annotated corpus in French for the study of urbanization and the natural risk prevention},
author={Koptelov, Maksim and Holveck, Margaux and Cremilleux, Bruno and Reynaud, Justine and Roche, Mathieu and Teisseire, Maguelonne},
journal={Scientific Data},
volume={10},
number={1},
pages={818},
year={2023},
publisher={Nature Publishing Group UK London}
}
To cite the code please use:
@inproceedings{koptelov2023towards,
title={Towards a (Semi-) Automatic Urban Planning Rule Identification in the French Language},
author={Koptelov, Maksim and Holveck, Margaux and Cremilleux, Bruno and Reynaud, Justine and Roche, Mathieu and Teisseire, Maguelonne},
booktitle={2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA)},
pages={1--10},
year={2023},
organization={IEEE}
}
- Downloads last month
- 11