combined_sft_10000_mcq_1epoch
This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407 on the combined_10000_mcq dataset. It achieves the following results on the evaluation set:
- Loss: 0.0013
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 20
- total_eval_batch_size: 20
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0043 | 0.0333 | 30 | 0.0045 |
0.0041 | 0.0667 | 60 | 0.0040 |
0.0042 | 0.1 | 90 | 0.0039 |
0.0038 | 0.1333 | 120 | 0.0038 |
0.0036 | 0.1667 | 150 | 0.0037 |
0.0038 | 0.2 | 180 | 0.0037 |
0.0039 | 0.2333 | 210 | 0.0038 |
0.0038 | 0.2667 | 240 | 0.0037 |
0.0034 | 0.3 | 270 | 0.0031 |
0.0032 | 0.3333 | 300 | 0.0026 |
0.0027 | 0.3667 | 330 | 0.0025 |
0.0022 | 0.4 | 360 | 0.0024 |
0.002 | 0.4333 | 390 | 0.0022 |
0.0025 | 0.4667 | 420 | 0.0022 |
0.0023 | 0.5 | 450 | 0.0021 |
0.0015 | 0.5333 | 480 | 0.0018 |
0.0017 | 0.5667 | 510 | 0.0017 |
0.0024 | 0.6 | 540 | 0.0020 |
0.0019 | 0.6333 | 570 | 0.0018 |
0.0015 | 0.6667 | 600 | 0.0016 |
0.0018 | 0.7 | 630 | 0.0015 |
0.0014 | 0.7333 | 660 | 0.0015 |
0.0015 | 0.7667 | 690 | 0.0015 |
0.0013 | 0.8 | 720 | 0.0014 |
0.0014 | 0.8333 | 750 | 0.0014 |
0.0017 | 0.8667 | 780 | 0.0014 |
0.0016 | 0.9 | 810 | 0.0013 |
0.0017 | 0.9333 | 840 | 0.0013 |
0.0011 | 0.9667 | 870 | 0.0013 |
0.0015 | 1.0 | 900 | 0.0013 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 18
Model tree for Howard881010/combined_sft_10000_mcq_1epoch
Base model
mistralai/Mistral-Nemo-Base-2407
Finetuned
mistralai/Mistral-Nemo-Instruct-2407