combined_sft_10000_mcq_1epoch

This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407 on the combined_10000_mcq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0013

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 20
  • total_eval_batch_size: 20
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.0043 0.0333 30 0.0045
0.0041 0.0667 60 0.0040
0.0042 0.1 90 0.0039
0.0038 0.1333 120 0.0038
0.0036 0.1667 150 0.0037
0.0038 0.2 180 0.0037
0.0039 0.2333 210 0.0038
0.0038 0.2667 240 0.0037
0.0034 0.3 270 0.0031
0.0032 0.3333 300 0.0026
0.0027 0.3667 330 0.0025
0.0022 0.4 360 0.0024
0.002 0.4333 390 0.0022
0.0025 0.4667 420 0.0022
0.0023 0.5 450 0.0021
0.0015 0.5333 480 0.0018
0.0017 0.5667 510 0.0017
0.0024 0.6 540 0.0020
0.0019 0.6333 570 0.0018
0.0015 0.6667 600 0.0016
0.0018 0.7 630 0.0015
0.0014 0.7333 660 0.0015
0.0015 0.7667 690 0.0015
0.0013 0.8 720 0.0014
0.0014 0.8333 750 0.0014
0.0017 0.8667 780 0.0014
0.0016 0.9 810 0.0013
0.0017 0.9333 840 0.0013
0.0011 0.9667 870 0.0013
0.0015 1.0 900 0.0013

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.1
Downloads last month
18
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Howard881010/combined_sft_10000_mcq_1epoch