File size: 3,124 Bytes
590f240 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
base_model: mistralai/Mistral-Nemo-Instruct-2407
library_name: peft
license: other
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: combined_sft_10000_mcq_1epoch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# combined_sft_10000_mcq_1epoch
This model is a fine-tuned version of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) on the combined_10000_mcq dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0013
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 20
- total_eval_batch_size: 20
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0043 | 0.0333 | 30 | 0.0045 |
| 0.0041 | 0.0667 | 60 | 0.0040 |
| 0.0042 | 0.1 | 90 | 0.0039 |
| 0.0038 | 0.1333 | 120 | 0.0038 |
| 0.0036 | 0.1667 | 150 | 0.0037 |
| 0.0038 | 0.2 | 180 | 0.0037 |
| 0.0039 | 0.2333 | 210 | 0.0038 |
| 0.0038 | 0.2667 | 240 | 0.0037 |
| 0.0034 | 0.3 | 270 | 0.0031 |
| 0.0032 | 0.3333 | 300 | 0.0026 |
| 0.0027 | 0.3667 | 330 | 0.0025 |
| 0.0022 | 0.4 | 360 | 0.0024 |
| 0.002 | 0.4333 | 390 | 0.0022 |
| 0.0025 | 0.4667 | 420 | 0.0022 |
| 0.0023 | 0.5 | 450 | 0.0021 |
| 0.0015 | 0.5333 | 480 | 0.0018 |
| 0.0017 | 0.5667 | 510 | 0.0017 |
| 0.0024 | 0.6 | 540 | 0.0020 |
| 0.0019 | 0.6333 | 570 | 0.0018 |
| 0.0015 | 0.6667 | 600 | 0.0016 |
| 0.0018 | 0.7 | 630 | 0.0015 |
| 0.0014 | 0.7333 | 660 | 0.0015 |
| 0.0015 | 0.7667 | 690 | 0.0015 |
| 0.0013 | 0.8 | 720 | 0.0014 |
| 0.0014 | 0.8333 | 750 | 0.0014 |
| 0.0017 | 0.8667 | 780 | 0.0014 |
| 0.0016 | 0.9 | 810 | 0.0013 |
| 0.0017 | 0.9333 | 840 | 0.0013 |
| 0.0011 | 0.9667 | 870 | 0.0013 |
| 0.0015 | 1.0 | 900 | 0.0013 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.46.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1 |