heat_transfer_sft_10000_mcq_2epoch
This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407 on the heat_transfer_10000_mcq dataset. It achieves the following results on the evaluation set:
- Loss: 0.0006
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 40
- total_eval_batch_size: 40
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.004 | 0.1333 | 30 | 0.0038 |
0.0036 | 0.2667 | 60 | 0.0036 |
0.0035 | 0.4 | 90 | 0.0033 |
0.0024 | 0.5333 | 120 | 0.0021 |
0.0011 | 0.6667 | 150 | 0.0011 |
0.0011 | 0.8 | 180 | 0.0009 |
0.001 | 0.9333 | 210 | 0.0008 |
0.0008 | 1.0667 | 240 | 0.0008 |
0.0009 | 1.2 | 270 | 0.0007 |
0.0006 | 1.3333 | 300 | 0.0007 |
0.0006 | 1.4667 | 330 | 0.0006 |
0.0004 | 1.6 | 360 | 0.0006 |
0.0007 | 1.7333 | 390 | 0.0006 |
0.0005 | 1.8667 | 420 | 0.0006 |
0.0005 | 2.0 | 450 | 0.0006 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 11
Model tree for Howard881010/heat_transfer_sft_10000_mcq_2epoch
Base model
mistralai/Mistral-Nemo-Base-2407
Finetuned
mistralai/Mistral-Nemo-Instruct-2407