Model Card for Mistral 7B SFT Ξ²

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the HuggingFaceH4/ultrachat_200k dataset. It is the SFT model that was used to train Zephyr-7B-Ξ² with Direct Preference Optimization.

It achieves the following results on the evaluation set:

  • Loss: 0.9399

Model description

  • Model type: A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
  • Language(s) (NLP): Primarily English
  • License: MIT
  • Finetuned from model: mistralai/Mistral-7B-v0.1

Model Sources

Intended uses & limitations

The model was fine-tuned with πŸ€— TRL's SFTTrainer on a filtered and preprocessed of the UltraChat dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.

Here's how you can run the model using the pipeline() function from πŸ€— Transformers:

# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="HuggingFaceH4/mistral-7b-sft-beta", torch_dtype=torch.bfloat16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate",
    },
    {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 16
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • total_eval_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.9367 0.67 272 0.9397

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.14.0
Downloads last month
6,689
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for HuggingFaceH4/mistral-7b-sft-beta

Finetuned
(810)
this model
Adapters
15 models
Finetunes
152 models
Quantizations
1 model

Dataset used to train HuggingFaceH4/mistral-7b-sft-beta

Spaces using HuggingFaceH4/mistral-7b-sft-beta 6

Collection including HuggingFaceH4/mistral-7b-sft-beta