model_soups / README.md
HuggingSara's picture
Update README.md
40b49a1
|
raw
history blame
1.58 kB
---
datasets:
- competitions/aiornot
language:
- en
metrics:
- accuracy
pipeline_tag: image-classification
---
# Model Card for Model Soups on AirorNot Dataset
## Model Details
### Model Description
Code implementation of the paper [Model soups: averaging weights of multiple fine-tuned models
improves accuracy without increasing inference time](https://arxiv.org/abs/2203.05482).
In recent years, finetuning large models has been proving to be an excellent strategy to achieve high-performances in downstream tasks.
The conventional recipe to do so, it's to fine-tune models with different hyperparameters and select the one achieving the highest accuracy. However Wortsman *et. al* proved that averaging the weights of multiple models finetuned with different hyperparameter configurations can actually inprove accuracy and robustness.
I read this paper recently and I felt intrigued by the powerful yet simple idea (achieving a SOTA result on Imagenet of s 90.94%) so I decided that this could be an opportunity to get my hands dirty and dive into the code and...try the soup!
I started by using the official [code implementation](https://github.com/mlfoundations/model-soups) with CLIP ViT-B/32 and finetuned only 5 of their models on AiorNot. I used a simple strategy with minimal modifications. Mainly, I finetuned the models for 8 epochs with a batch size of 56 samples.
The tricky part was that I had to modify the baseline to use it with our custom dataset.
- **Developed by:** HuggingSara
- **Model type:** Computer Vision
- **Language :** Python