File size: 11,011 Bytes
2485ec4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import torch
from torch import nn
import torch.nn.functional as F
from abc import abstractmethod
from torch import tensor as Tensor
from typing import List, Any
class BaseVAE(nn.Module):
def __init__(self) -> None:
super(BaseVAE, self).__init__()
def encode(self, input: Tensor) -> List[Tensor]:
raise NotImplementedError
def decode(self, input: Tensor) -> Any:
raise NotImplementedError
def sample(self, batch_size: int, current_device: int, **kwargs) -> Tensor:
raise NotImplementedError
def generate(self, x: Tensor, **kwargs) -> Tensor:
raise NotImplementedError
@abstractmethod
def forward(self, *inputs: Tensor) -> Tensor:
pass
@abstractmethod
def loss_function(self, *inputs: Any, **kwargs) -> Tensor:
pass
class MLPAE(BaseVAE):
def __init__(
self,
in_channels: int,
semantic_latent_dim: int,
truthful_latent_dim: int,
semantic_hidden_dims: List = None,
truthful_hidden_dims: List = None,
decoder_hidden_dims: List = None,
**kwargs
) -> None:
super(MLPAE, self).__init__()
self.semantic_latent_dim = semantic_latent_dim
if semantic_hidden_dims is None:
semantic_hidden_dims = []
# Build Semantic Encoder
semantic_encoder_modules = []
flat_size = in_channels
for h_dim in semantic_hidden_dims:
semantic_encoder_modules.append(
nn.Sequential(
nn.Linear(flat_size, h_dim), nn.LayerNorm(h_dim), nn.LeakyReLU()
)
)
flat_size = h_dim
semantic_encoder_modules.append(
nn.Sequential(
nn.Linear(flat_size, semantic_latent_dim),
nn.LayerNorm(semantic_latent_dim),
nn.LeakyReLU(),
)
)
self.semantic_encoder = nn.Sequential(*semantic_encoder_modules)
if truthful_hidden_dims is None:
truthful_hidden_dims = []
# Build Truthful Encoder
truthful_encoder_modules = []
flat_size = in_channels
for h_dim in truthful_hidden_dims:
truthful_encoder_modules.append(
nn.Sequential(
(
nn.Linear(flat_size, h_dim)
if flat_size != h_dim
else nn.Identity()
),
nn.LayerNorm(h_dim),
nn.LeakyReLU(),
)
)
flat_size = h_dim
truthful_encoder_modules.append(
nn.Sequential(
(
nn.Linear(flat_size, truthful_latent_dim)
if flat_size != truthful_latent_dim
else nn.Identity()
),
nn.LayerNorm(truthful_latent_dim),
nn.LeakyReLU(),
)
)
self.truthful_encoder = nn.Sequential(*truthful_encoder_modules)
# Cross-Attention Module
self.num_heads = 1
self.cross_attention = nn.MultiheadAttention(
embed_dim=semantic_latent_dim, num_heads=self.num_heads
)
self.proj = None
if semantic_latent_dim != truthful_latent_dim:
self.proj = nn.Linear(truthful_latent_dim, semantic_latent_dim, bias=False)
# Build Decoder
decoder_modules = []
if len(decoder_hidden_dims) > 0:
flat_size = semantic_latent_dim
for h_dim in decoder_hidden_dims:
decoder_modules.append(
nn.Sequential(
nn.Linear(flat_size, h_dim), nn.LayerNorm(h_dim), nn.LeakyReLU()
)
)
flat_size = h_dim
flat_size = decoder_hidden_dims[-1]
self.decoder = nn.Sequential(*decoder_modules)
else:
self.decoder_input = None
self.decoder = None
flat_size = semantic_latent_dim
self.final_layer = nn.Sequential(nn.Linear(flat_size, in_channels))
def encode_semantic(self, input: Tensor) -> List[Tensor]:
semantic_latent_rep = self.semantic_encoder(input)
return semantic_latent_rep
def encode_truthful(self, input: Tensor) -> List[Tensor]:
truthful_latent_rep = self.truthful_encoder(input)
truthful_latent_rep = F.normalize(truthful_latent_rep, p=2, dim=-1)
return truthful_latent_rep
def attention(self, query: Tensor, key: Tensor, value: Tensor) -> Tensor:
if self.proj is not None and query.size(-1) != key.size(-1):
key = self.proj(key)
value = self.proj(value)
query = query.unsqueeze(0)
key = key.unsqueeze(0)
value = value.unsqueeze(0)
output, attention_weights = self.cross_attention(query, key, value)
return output[0]
def decode(self, z: Tensor) -> Tensor:
result = z
if self.decoder is not None:
result = self.decoder(result)
result = self.final_layer(result)
return result
def forward(
self, input: Tensor, truthful_latent_rep=None, **kwargs
) -> List[Tensor]:
semantic_latent_rep = self.encode_semantic(input)
if truthful_latent_rep is None:
truthful_latent_rep = self.encode_truthful(input)
truthful_latent_rep = truthful_latent_rep.reshape(
-1, truthful_latent_rep.size(-1)
)
z = semantic_latent_rep + self.attention(
semantic_latent_rep,
truthful_latent_rep.contiguous(),
truthful_latent_rep.contiguous(),
)
output = self.decode(z)
return [output, input, semantic_latent_rep, truthful_latent_rep]
def forward_decoder(self, input, semantic_latent_rep, truthful_latent_rep):
z = semantic_latent_rep + self.attention(
semantic_latent_rep, truthful_latent_rep, truthful_latent_rep
)
output = self.decode(z)
return [output, input, semantic_latent_rep, truthful_latent_rep]
def get_semantic_latent_rep(self, input: Tensor, **kwargs) -> List[Tensor]:
semantic_latent_rep = self.encode_semantic(input)
return semantic_latent_rep
def get_truthful_latent_rep(self, input: Tensor, **kwargs) -> List[Tensor]:
truthful_latent_rep = self.encode_truthful(input)
return truthful_latent_rep
def loss_function(self, *args, **kwargs) -> dict:
recons = args[0]
input = args[1]
recons_loss = F.mse_loss(recons, input)
loss = recons_loss
return {"loss": loss, "Reconstruction_Loss": recons_loss.detach()}
class TruthX:
def __init__(self, model_path, hidden_size, edit_strength=1.0, top_layers=10):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
checkpoint = torch.load(model_path)
args = checkpoint["args"]
semantic_latent_dim = args.semantic_latent_dim # Adjust as needed
truthful_latent_dim = args.truthful_latent_dim
semantic_hidden_dims = (
[int(_) for _ in args.semantic_hidden_dims.split(",")]
if args.semantic_hidden_dims != ""
else []
)
truthful_hidden_dims = (
[int(_) for _ in args.truthful_hidden_dims.split(",")]
if args.truthful_hidden_dims != ""
else []
)
decoder_hidden_dims = (
[int(_) for _ in args.decoder_hidden_dims.split(",")]
if args.decoder_hidden_dims != ""
else []
)
ae_model = MLPAE(
in_channels=hidden_size,
semantic_latent_dim=semantic_latent_dim,
truthful_latent_dim=truthful_latent_dim,
semantic_hidden_dims=semantic_hidden_dims,
truthful_hidden_dims=truthful_hidden_dims,
decoder_hidden_dims=decoder_hidden_dims,
).to(device)
ae_model.load_state_dict(checkpoint["state_dict"])
ae_model.pos_center = ((checkpoint["pos_center"])).to(device)
ae_model.neg_center = ((checkpoint["neg_center"])).to(device)
ae_model.eval()
ae_model.to(device)
self.ae_model = ae_model
self.rank = checkpoint["rank"]
self.top_layers = top_layers
self.edit_strength = edit_strength
self.cur_layer_id = 0
self.prompt_length = None
self.mc = False
@torch.inference_mode()
def edit(self, X):
layer_id = int(self.cur_layer_id.split(".")[0])
if self.cur_layer_id.endswith("attn"):
layer_id = 2 * layer_id
else:
layer_id = 2 * layer_id + 1
if self.rank[layer_id] > self.top_layers:
return X
bsz, s_len, d = X.size()
x = (
X.contiguous()
.view(-1, d)
.type_as(self.ae_model.semantic_encoder[0][0].weight)
)
x_truthful = self.ae_model.get_truthful_latent_rep(
X.type_as(self.ae_model.semantic_encoder[0][0].weight)
)
pos_center = self.ae_model.pos_center[layer_id].unsqueeze(0)
neg_center = self.ae_model.neg_center[layer_id].unsqueeze(0)
delta = (pos_center - neg_center).unsqueeze(0)
recon_x_pos = (
self.ae_model(
x,
truthful_latent_rep=F.normalize(
x_truthful + delta, p=2, dim=-1
).type_as(x),
)[0]
.contiguous()
.view(bsz, s_len, d)
)
recon_x_neg = (
self.ae_model(
x,
truthful_latent_rep=F.normalize(
x_truthful - delta, p=2, dim=-1
).type_as(x),
)[0]
.contiguous()
.view(bsz, s_len, d)
)
Delta = recon_x_pos - recon_x_neg
Delta = Delta.contiguous().to(X.dtype)
Delta = F.normalize(Delta, p=2, dim=-1).type_as(X) * torch.norm(
X, p=2, dim=-1
).unsqueeze(2)
mask = torch.ones((bsz, s_len), device=Delta.device)
if self.mc:
# multiple-choice, only edit the tokens in answer
mask[:, : self.prompt_length + 1] = 0
# probing those untruthful position
probing = (
torch.nn.functional.cosine_similarity(
x_truthful, neg_center.unsqueeze(1), dim=-1
)
- torch.nn.functional.cosine_similarity(
x_truthful, pos_center.unsqueeze(1), dim=-1
)
).clamp(0, 999)
mask = mask * probing
else:
# open-ended generation, only edit the generated token (i.e., last token)
mask[:, :-1] = 0
mask[:, -1:] = 1
new_X = X + (Delta.type_as(X)) * self.edit_strength * mask.unsqueeze(2).type_as(X)
return new_X
|