Vily1998 commited on
Commit
0314fc0
·
1 Parent(s): 2485ec4
Files changed (3) hide show
  1. ._tokenizer.json +0 -0
  2. README.md +34 -0
  3. truthx_results.png +0 -0
._tokenizer.json DELETED
Binary file (4.1 kB)
 
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
  license: gpl-3.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: gpl-3.0
3
  ---
4
+ # TruthX: Alleviating Hallucinations by Editing Large Language Models in Truthful Space
5
+
6
+ > [Shaolei Zhang](https://zhangshaolei1998.github.io/), Tian Yu, [Yang Feng](https://people.ucas.edu.cn/~yangfeng?language=en)*
7
+
8
+ **TruthX** is an inference-time method to elicit the truthfulness of LLMs by editing their internal representations in truthful space, thereby mitigating the hallucinations of LLMs. On the [TruthfulQA benchmark](https://paperswithcode.com/sota/question-answering-on-truthfulqa), TruthX yields an average **enhancement of 20% in truthfulness** across 13 advanced LLMs.
9
+
10
+ <div align="center">
11
+ <img src="./truthx_results.png" alt="img" width="100%" />
12
+ </div>
13
+ <p align="center">
14
+ TruthfulQA MC1 accuracy of TruthX across 13 advanced LLMs
15
+ </p>
16
+
17
+ This repo provide **Llama-2-7B-Chat-TruthX**, a Llama-2-7B-Chat model with baked-in TruthX model. You can directly download this baked-in model and use it like standard Llama, no additional operations are required.
18
+
19
+ ## Quick Starts
20
+ Inference with Llama-2-7B-Chat-TruthX:
21
+
22
+ ```python
23
+ import torch
24
+ from transformers import AutoTokenizer, AutoModelForCausalLM
25
+
26
+ llama2chat_with_truthx = "ICTNLP/Llama-2-7b-chat-TruthX"
27
+ tokenizer = AutoTokenizer.from_pretrained(llama2chat_with_truthx, trust_remote_code=True)
28
+ model = AutoModelForCausalLM.from_pretrained(llama2chat_with_truthx, trust_remote_code=True,torch_dtype=torch.float16).cuda()
29
+
30
+ question = "What are the benefits of eating an apple a day?"
31
+ encoded_inputs = tokenizer(question, return_tensors="pt")["input_ids"]
32
+ outputs = model.generate(encoded_inputs.cuda())[0, encoded_inputs.shape[-1] :]
33
+ outputs_text = tokenizer.decode(outputs, skip_special_tokens=True).strip()
34
+ print(outputs_text)
35
+ ```
36
+
37
+ Please refer to [GitHub repo](https://github.com/ictnlp/TruthX) and our paper for more details.
truthx_results.png ADDED