RuBERTExtSumGazeta
Model description
Model for extractive summarization based on rubert-base-cased
Intended uses & limitations
How to use
Colab: link
import razdel
from transformers import AutoTokenizer, BertForTokenClassification
model_name = "IlyaGusev/rubert_ext_sum_gazeta"
tokenizer = AutoTokenizer.from_pretrained(model_name)
sep_token = tokenizer.sep_token
sep_token_id = tokenizer.sep_token_id
model = BertForTokenClassification.from_pretrained(model_name)
article_text = "..."
sentences = [s.text for s in razdel.sentenize(article_text)]
article_text = sep_token.join(sentences)
inputs = tokenizer(
[article_text],
max_length=500,
padding="max_length",
truncation=True,
return_tensors="pt",
)
sep_mask = inputs["input_ids"][0] == sep_token_id
# Fix token_type_ids
current_token_type_id = 0
for pos, input_id in enumerate(inputs["input_ids"][0]):
inputs["token_type_ids"][0][pos] = current_token_type_id
if input_id == sep_token_id:
current_token_type_id = 1 - current_token_type_id
# Infer model
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits[0, :, 1]
# Choose sentences
logits = logits[sep_mask]
logits, indices = logits.sort(descending=True)
logits, indices = logits.cpu().tolist(), indices.cpu().tolist()
pairs = list(zip(logits, indices))
pairs = pairs[:3]
indices = list(sorted([idx for _, idx in pairs]))
summary = " ".join([sentences[idx] for idx in indices])
print(summary)
Limitations and bias
- The model should work well with Gazeta.ru articles, but for any other agencies it can suffer from domain shift
Training data
- Dataset: Gazeta
Training procedure
TBD
Eval results
TBD
Evaluation: https://github.com/IlyaGusev/summarus/blob/master/evaluate.py
Flags: --language ru --tokenize-after --lower
- Downloads last month
- 63
Inference API (serverless) has been turned off for this model.