convnext-tiny-224_finetuned_on_unlabelled_IA_with_snorkel_labels

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4381
  • Precision: 0.8239
  • Recall: 0.7919
  • F1: 0.8058
  • Accuracy: 0.8629

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 112 0.5589 0.7547 0.5380 0.5097 0.7679
No log 2.0 224 0.5578 0.7691 0.5387 0.5103 0.7690
No log 3.0 336 0.4812 0.8513 0.7371 0.7709 0.8555
No log 4.0 448 0.4387 0.8734 0.6539 0.6835 0.8259
0.482 5.0 560 0.4427 0.8322 0.6250 0.6449 0.8085
0.482 6.0 672 0.6234 0.8219 0.5702 0.5635 0.7848
0.482 7.0 784 0.6187 0.8791 0.6070 0.6196 0.8054
0.482 8.0 896 0.3953 0.8683 0.7134 0.7507 0.8502
0.3656 9.0 1008 0.4381 0.8239 0.7919 0.8058 0.8629
0.3656 10.0 1120 0.5346 0.7794 0.7900 0.7844 0.8370
0.3656 11.0 1232 0.3685 0.8678 0.7600 0.7943 0.8681
0.3656 12.0 1344 0.6900 0.6244 0.6667 0.6099 0.6435
0.3656 13.0 1456 0.6097 0.6832 0.7149 0.6931 0.7511
0.2987 14.0 1568 0.5435 0.8746 0.6754 0.7096 0.8354
0.2987 15.0 1680 0.5525 0.7277 0.7690 0.7411 0.7890
0.2987 16.0 1792 0.5003 0.8086 0.7694 0.7856 0.8507
0.2987 17.0 1904 0.8172 0.6183 0.6576 0.6074 0.6450
0.2598 18.0 2016 0.6102 0.6977 0.7489 0.7070 0.75
0.2598 19.0 2128 0.4260 0.8523 0.7497 0.7822 0.8602
0.2598 20.0 2240 0.5503 0.8276 0.6770 0.7079 0.8281
0.2598 21.0 2352 0.4574 0.7994 0.7785 0.7879 0.8481
0.2598 22.0 2464 0.6307 0.8620 0.6353 0.6592 0.8165
0.2111 23.0 2576 0.4605 0.8196 0.7697 0.7894 0.8555
0.2111 24.0 2688 0.5290 0.8152 0.7320 0.7592 0.8434
0.2111 25.0 2800 0.4754 0.8755 0.7216 0.7599 0.8550
0.2111 26.0 2912 0.5161 0.8428 0.7436 0.7750 0.8555
0.1638 27.0 3024 0.5753 0.7358 0.7278 0.7316 0.8043
0.1638 28.0 3136 0.6403 0.8468 0.7016 0.7360 0.8412
0.1638 29.0 3248 0.5418 0.7912 0.7473 0.7647 0.8381
0.1638 30.0 3360 0.5651 0.8240 0.7315 0.7607 0.8460

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.0
  • Tokenizers 0.13.1
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.