|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- text-classfication |
|
- int8 |
|
- Intel® Neural Compressor |
|
- neural-compressor |
|
- PostTrainingStatic |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
model_index: |
|
- name: sst2 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE SST2 |
|
type: glue |
|
args: sst2 |
|
metric: |
|
name: Accuracy |
|
type: accuracy |
|
value: 0.9254587155963303 |
|
--- |
|
# INT8 albert-base-v2-sst2 |
|
|
|
## Post-training static quantization |
|
|
|
### PyTorch |
|
|
|
This is an INT8 PyTorch model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). |
|
|
|
The original fp32 model comes from the fine-tuned model [Alireza1044/albert-base-v2-sst2](https://huggingface.co/Alireza1044/albert-base-v2-sst2). |
|
|
|
The calibration dataloader is the train dataloader. The default calibration sampling size 300 isn't divisible exactly by batch size 8, so the real sampling size is 304. |
|
|
|
The linear modules **albert.encoder.albert_layer_groups.0.albert_layers.0.ffn_output.module, albert.encoder.albert_layer_groups.0.albert_layers.0.ffn.module** fall back to fp32 to meet the 1% relative accuracy loss. |
|
|
|
#### Test result |
|
|
|
| |INT8|FP32| |
|
|---|:---:|:---:| |
|
| **Accuracy (eval-accuracy)** |0.9255|0.9232| |
|
| **Model size (MB)** |25|44.6| |
|
|
|
#### Load with Intel® Neural Compressor: |
|
|
|
```python |
|
from optimum.intel import INCModelForSequenceClassification |
|
|
|
model_id = "Intel/albert-base-v2-sst2-int8-static" |
|
int8_model = INCModelForSequenceClassification.from_pretrained(model_id) |
|
``` |
|
|
|
### ONNX |
|
|
|
This is an INT8 ONNX model quantized with [Intel® Neural Compressor](https://github.com/intel/neural-compressor). |
|
|
|
The original fp32 model comes from the fine-tuned model [Alireza1044/albert-base-v2-sst2](https://huggingface.co/Alireza1044/albert-base-v2-sst2). |
|
|
|
The calibration dataloader is the eval dataloader. The calibration sampling size is 100. |
|
|
|
#### Test result |
|
|
|
| |INT8|FP32| |
|
|---|:---:|:---:| |
|
| **Accuracy (eval-accuracy)** |0.9140|0.9232| |
|
| **Model size (MB)** |50|45| |
|
|
|
|
|
#### Load ONNX model: |
|
|
|
```python |
|
from optimum.onnxruntime import ORTModelForSequenceClassification |
|
model = ORTModelForSequenceClassification.from_pretrained('Intel/albert-base-v2-sst2-int8-static') |
|
``` |
|
|