English
gpt-j-6b-int4-inc / README.md
yintongl's picture
Update README.md
11fd213 verified
|
raw
history blame
2.72 kB
metadata
license: apache-2.0
datasets:
  - NeelNanda/pile-10k
language:
  - en

Model Details

This model is an int4 model with group_size 128 of EleutherAI/gpt-j-6b generated by intel/auto-round. Inference of this model is compatible with AutoGPTQ's Kernel.

Reproduce the model

Here is the sample command to reproduce the model

git clone https://github.com/intel/auto-round
cd auto-round/examples/language-modeling
pip install -r requirements.txt
python3 main.py \
--model_name  EleutherAI/gpt-j-6b \
--device 0 \
--group_size 128 \
--bits 4 \
--iters 1000 \
--minmax_lr 2e-3 \
--deployment_device 'gpu' \
--disable_quanted_input \
--output_dir "./tmp_autoround" \

Evaluate the model

Install lm-eval-harness from source, we used the git id 96d185fa6232a5ab685ba7c43e45d1dbb3bb906d

lm_eval --model hf --model_args pretrained="Intel/gpt-j-6b-int4-inc",autogptq=True,gptq_use_triton=True --device cuda:0 --tasks lambada_openai,hellaswag,piqa,winogrande,truthfulqa_mc1,openbookqa,boolq,rte,arc_easy,arc_challenge,mmlu --batch_size 32
Metric FP16 INT4
Avg. 0.4998 0.4993
mmlu 0.2694 0.2750
lambada_openai 0.6831 0.6845
hellaswag 0.4953 0.4897
winogrande 0.6409 0.6425
piqa 0.7541 0.7448
truthfulqa_mc1 0.2020 0.2093
openbookqa 0.2900 0.2820
boolq 0.6544 0.6511
arc_easy 0.6692 0.6709
arc_challenge 0.3396 0.3430

Caveats and Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.

Here are a couple of useful links to learn more about Intel's AI software:

  • Intel Neural Compressor link
  • Intel Extension for Transformers link

Disclaimer

The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.

Cite

@article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }

arxiv github