neural-embedding-v1 / README.md
lvkaokao
update doc.
9dead9b
metadata
tags:
  - mteb
model-index:
  - name: neural-embedding-v1
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 93.10447761194031
          - type: ap
            value: 72.52673607512206
          - type: f1
            value: 89.6752355529259
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 97.536525
          - type: ap
            value: 96.46802431780014
          - type: f1
            value: 97.53623627430422
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 61.17399999999999
          - type: f1
            value: 60.40485236445537
      - task:
          type: Retrieval
        dataset:
          type: mteb/arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
        metrics:
          - type: map_at_1
            value: 44.452000000000005
          - type: map_at_10
            value: 59.563
          - type: map_at_100
            value: 60.014
          - type: map_at_1000
            value: 60.016000000000005
          - type: map_at_20
            value: 59.923
          - type: map_at_3
            value: 55.915000000000006
          - type: map_at_5
            value: 58.056
          - type: mrr_at_1
            value: 45.804
          - type: mrr_at_10
            value: 60.089999999999996
          - type: mrr_at_100
            value: 60.541
          - type: mrr_at_1000
            value: 60.543
          - type: mrr_at_20
            value: 60.45
          - type: mrr_at_3
            value: 56.294
          - type: mrr_at_5
            value: 58.54899999999999
          - type: ndcg_at_1
            value: 44.452000000000005
          - type: ndcg_at_10
            value: 67.208
          - type: ndcg_at_100
            value: 69.074
          - type: ndcg_at_1000
            value: 69.122
          - type: ndcg_at_20
            value: 68.474
          - type: ndcg_at_3
            value: 59.758
          - type: ndcg_at_5
            value: 63.621
          - type: precision_at_1
            value: 44.452000000000005
          - type: precision_at_10
            value: 9.125
          - type: precision_at_100
            value: 0.993
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_20
            value: 4.808
          - type: precision_at_3
            value: 23.637
          - type: precision_at_5
            value: 16.06
          - type: recall_at_1
            value: 44.452000000000005
          - type: recall_at_10
            value: 91.252
          - type: recall_at_100
            value: 99.289
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_20
            value: 96.15899999999999
          - type: recall_at_3
            value: 70.91
          - type: recall_at_5
            value: 80.29899999999999
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 53.445166004781356
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 48.82101672589653
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 68.44973588765177
          - type: mrr
            value: 80.355274150288
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 90.06690068909613
          - type: cos_sim_spearman
            value: 87.97730582741434
          - type: euclidean_pearson
            value: 86.04185393610108
          - type: euclidean_spearman
            value: 85.91340337831018
          - type: manhattan_pearson
            value: 86.05913485565931
          - type: manhattan_spearman
            value: 85.70195277713228
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 88.73376623376623
          - type: f1
            value: 88.67733851784945
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 48.822459956481474
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 45.068617486695764
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-android
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: f46a197baaae43b4f621051089b82a364682dfeb
        metrics:
          - type: map_at_1
            value: 36.980000000000004
          - type: map_at_10
            value: 51.151
          - type: map_at_100
            value: 52.852
          - type: map_at_1000
            value: 52.957
          - type: map_at_20
            value: 52.196
          - type: map_at_3
            value: 46.537
          - type: map_at_5
            value: 49.025999999999996
          - type: mrr_at_1
            value: 45.494
          - type: mrr_at_10
            value: 56.765
          - type: mrr_at_100
            value: 57.483
          - type: mrr_at_1000
            value: 57.508
          - type: mrr_at_20
            value: 57.255
          - type: mrr_at_3
            value: 53.815000000000005
          - type: mrr_at_5
            value: 55.725
          - type: ndcg_at_1
            value: 45.494
          - type: ndcg_at_10
            value: 58.435
          - type: ndcg_at_100
            value: 63.318
          - type: ndcg_at_1000
            value: 64.498
          - type: ndcg_at_20
            value: 60.88
          - type: ndcg_at_3
            value: 52.307
          - type: ndcg_at_5
            value: 55.103
          - type: precision_at_1
            value: 45.494
          - type: precision_at_10
            value: 11.488
          - type: precision_at_100
            value: 1.735
          - type: precision_at_1000
            value: 0.215
          - type: precision_at_20
            value: 6.8309999999999995
          - type: precision_at_3
            value: 25.513
          - type: precision_at_5
            value: 18.282999999999998
          - type: recall_at_1
            value: 36.980000000000004
          - type: recall_at_10
            value: 72.82300000000001
          - type: recall_at_100
            value: 91.525
          - type: recall_at_1000
            value: 98.44800000000001
          - type: recall_at_20
            value: 81.345
          - type: recall_at_3
            value: 55.044000000000004
          - type: recall_at_5
            value: 63.441
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-english
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
        metrics:
          - type: map_at_1
            value: 37.489
          - type: map_at_10
            value: 50.708
          - type: map_at_100
            value: 52.101
          - type: map_at_1000
            value: 52.22
          - type: map_at_20
            value: 51.514
          - type: map_at_3
            value: 46.915
          - type: map_at_5
            value: 49.185
          - type: mrr_at_1
            value: 47.643
          - type: mrr_at_10
            value: 56.806
          - type: mrr_at_100
            value: 57.369
          - type: mrr_at_1000
            value: 57.399
          - type: mrr_at_20
            value: 57.141
          - type: mrr_at_3
            value: 54.437000000000005
          - type: mrr_at_5
            value: 55.955999999999996
          - type: ndcg_at_1
            value: 47.643
          - type: ndcg_at_10
            value: 56.989000000000004
          - type: ndcg_at_100
            value: 60.995999999999995
          - type: ndcg_at_1000
            value: 62.668
          - type: ndcg_at_20
            value: 58.63699999999999
          - type: ndcg_at_3
            value: 52.26499999999999
          - type: ndcg_at_5
            value: 54.684999999999995
          - type: precision_at_1
            value: 47.643
          - type: precision_at_10
            value: 10.879
          - type: precision_at_100
            value: 1.6320000000000001
          - type: precision_at_1000
            value: 0.211
          - type: precision_at_20
            value: 6.338000000000001
          - type: precision_at_3
            value: 25.52
          - type: precision_at_5
            value: 18.229
          - type: recall_at_1
            value: 37.489
          - type: recall_at_10
            value: 68.10300000000001
          - type: recall_at_100
            value: 84.497
          - type: recall_at_1000
            value: 94.402
          - type: recall_at_20
            value: 73.849
          - type: recall_at_3
            value: 53.925
          - type: recall_at_5
            value: 60.878
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gaming
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 4885aa143210c98657558c04aaf3dc47cfb54340
        metrics:
          - type: map_at_1
            value: 45.044000000000004
          - type: map_at_10
            value: 59.804
          - type: map_at_100
            value: 60.841
          - type: map_at_1000
            value: 60.870999999999995
          - type: map_at_20
            value: 60.478
          - type: map_at_3
            value: 56.169000000000004
          - type: map_at_5
            value: 58.331999999999994
          - type: mrr_at_1
            value: 51.849999999999994
          - type: mrr_at_10
            value: 63.249
          - type: mrr_at_100
            value: 63.786
          - type: mrr_at_1000
            value: 63.797000000000004
          - type: mrr_at_20
            value: 63.592999999999996
          - type: mrr_at_3
            value: 60.721000000000004
          - type: mrr_at_5
            value: 62.251
          - type: ndcg_at_1
            value: 51.849999999999994
          - type: ndcg_at_10
            value: 66.122
          - type: ndcg_at_100
            value: 69.614
          - type: ndcg_at_1000
            value: 70.12
          - type: ndcg_at_20
            value: 67.805
          - type: ndcg_at_3
            value: 60.348
          - type: ndcg_at_5
            value: 63.33800000000001
          - type: precision_at_1
            value: 51.849999999999994
          - type: precision_at_10
            value: 10.539
          - type: precision_at_100
            value: 1.327
          - type: precision_at_1000
            value: 0.13999999999999999
          - type: precision_at_20
            value: 5.865
          - type: precision_at_3
            value: 27.084999999999997
          - type: precision_at_5
            value: 18.483
          - type: recall_at_1
            value: 45.044000000000004
          - type: recall_at_10
            value: 81.192
          - type: recall_at_100
            value: 95.597
          - type: recall_at_1000
            value: 98.97200000000001
          - type: recall_at_20
            value: 87.139
          - type: recall_at_3
            value: 65.713
          - type: recall_at_5
            value: 73.213
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-gis
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 5003b3064772da1887988e05400cf3806fe491f2
        metrics:
          - type: map_at_1
            value: 29.834
          - type: map_at_10
            value: 40.363
          - type: map_at_100
            value: 41.559000000000005
          - type: map_at_1000
            value: 41.626000000000005
          - type: map_at_20
            value: 41.160999999999994
          - type: map_at_3
            value: 36.958999999999996
          - type: map_at_5
            value: 38.897999999999996
          - type: mrr_at_1
            value: 32.429
          - type: mrr_at_10
            value: 42.604
          - type: mrr_at_100
            value: 43.54
          - type: mrr_at_1000
            value: 43.59
          - type: mrr_at_20
            value: 43.247
          - type: mrr_at_3
            value: 39.528999999999996
          - type: mrr_at_5
            value: 41.36
          - type: ndcg_at_1
            value: 32.429
          - type: ndcg_at_10
            value: 46.39
          - type: ndcg_at_100
            value: 51.561
          - type: ndcg_at_1000
            value: 53.071
          - type: ndcg_at_20
            value: 48.951
          - type: ndcg_at_3
            value: 39.796
          - type: ndcg_at_5
            value: 43.07
          - type: precision_at_1
            value: 32.429
          - type: precision_at_10
            value: 7.277
          - type: precision_at_100
            value: 1.038
          - type: precision_at_1000
            value: 0.11900000000000001
          - type: precision_at_20
            value: 4.249
          - type: precision_at_3
            value: 17.024
          - type: precision_at_5
            value: 12.113
          - type: recall_at_1
            value: 29.834
          - type: recall_at_10
            value: 62.808
          - type: recall_at_100
            value: 85.47200000000001
          - type: recall_at_1000
            value: 96.503
          - type: recall_at_20
            value: 72.246
          - type: recall_at_3
            value: 45.059
          - type: recall_at_5
            value: 52.907000000000004
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-mathematica
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 90fceea13679c63fe563ded68f3b6f06e50061de
        metrics:
          - type: map_at_1
            value: 22.121
          - type: map_at_10
            value: 33.217
          - type: map_at_100
            value: 34.671
          - type: map_at_1000
            value: 34.77
          - type: map_at_20
            value: 34.039
          - type: map_at_3
            value: 29.389
          - type: map_at_5
            value: 31.749
          - type: mrr_at_1
            value: 27.114
          - type: mrr_at_10
            value: 37.730999999999995
          - type: mrr_at_100
            value: 38.673
          - type: mrr_at_1000
            value: 38.725
          - type: mrr_at_20
            value: 38.279
          - type: mrr_at_3
            value: 34.494
          - type: mrr_at_5
            value: 36.609
          - type: ndcg_at_1
            value: 27.114
          - type: ndcg_at_10
            value: 39.723000000000006
          - type: ndcg_at_100
            value: 45.847
          - type: ndcg_at_1000
            value: 47.879
          - type: ndcg_at_20
            value: 42.129
          - type: ndcg_at_3
            value: 33.194
          - type: ndcg_at_5
            value: 36.763
          - type: precision_at_1
            value: 27.114
          - type: precision_at_10
            value: 7.575
          - type: precision_at_100
            value: 1.218
          - type: precision_at_1000
            value: 0.15
          - type: precision_at_20
            value: 4.527
          - type: precision_at_3
            value: 16.252
          - type: precision_at_5
            value: 12.363
          - type: recall_at_1
            value: 22.121
          - type: recall_at_10
            value: 54.726
          - type: recall_at_100
            value: 80.662
          - type: recall_at_1000
            value: 94.645
          - type: recall_at_20
            value: 62.977000000000004
          - type: recall_at_3
            value: 37.348
          - type: recall_at_5
            value: 46.163
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-physics
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
        metrics:
          - type: map_at_1
            value: 36.346000000000004
          - type: map_at_10
            value: 50.034
          - type: map_at_100
            value: 51.37500000000001
          - type: map_at_1000
            value: 51.464
          - type: map_at_20
            value: 50.739999999999995
          - type: map_at_3
            value: 45.948
          - type: map_at_5
            value: 48.421
          - type: mrr_at_1
            value: 45.043
          - type: mrr_at_10
            value: 55.642
          - type: mrr_at_100
            value: 56.335
          - type: mrr_at_1000
            value: 56.355999999999995
          - type: mrr_at_20
            value: 56.027
          - type: mrr_at_3
            value: 53.224000000000004
          - type: mrr_at_5
            value: 54.798
          - type: ndcg_at_1
            value: 45.043
          - type: ndcg_at_10
            value: 56.627
          - type: ndcg_at_100
            value: 61.751
          - type: ndcg_at_1000
            value: 62.873999999999995
          - type: ndcg_at_20
            value: 58.521
          - type: ndcg_at_3
            value: 50.995999999999995
          - type: ndcg_at_5
            value: 54.049
          - type: precision_at_1
            value: 45.043
          - type: precision_at_10
            value: 10.51
          - type: precision_at_100
            value: 1.521
          - type: precision_at_1000
            value: 0.179
          - type: precision_at_20
            value: 5.958
          - type: precision_at_3
            value: 24.703
          - type: precision_at_5
            value: 17.671
          - type: recall_at_1
            value: 36.346000000000004
          - type: recall_at_10
            value: 69.95
          - type: recall_at_100
            value: 91.449
          - type: recall_at_1000
            value: 98.021
          - type: recall_at_20
            value: 76.522
          - type: recall_at_3
            value: 54.348
          - type: recall_at_5
            value: 62.271
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-programmers
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
        metrics:
          - type: map_at_1
            value: 28.754
          - type: map_at_10
            value: 42.921
          - type: map_at_100
            value: 44.440000000000005
          - type: map_at_1000
            value: 44.516
          - type: map_at_20
            value: 43.815
          - type: map_at_3
            value: 38.592999999999996
          - type: map_at_5
            value: 41.138999999999996
          - type: mrr_at_1
            value: 36.416
          - type: mrr_at_10
            value: 48.284
          - type: mrr_at_100
            value: 49.086
          - type: mrr_at_1000
            value: 49.116
          - type: mrr_at_20
            value: 48.741
          - type: mrr_at_3
            value: 45.301
          - type: mrr_at_5
            value: 47.104
          - type: ndcg_at_1
            value: 36.416
          - type: ndcg_at_10
            value: 50.257
          - type: ndcg_at_100
            value: 55.931
          - type: ndcg_at_1000
            value: 57.188
          - type: ndcg_at_20
            value: 52.607000000000006
          - type: ndcg_at_3
            value: 43.787
          - type: ndcg_at_5
            value: 46.941
          - type: precision_at_1
            value: 36.416
          - type: precision_at_10
            value: 9.783
          - type: precision_at_100
            value: 1.465
          - type: precision_at_1000
            value: 0.173
          - type: precision_at_20
            value: 5.713
          - type: precision_at_3
            value: 21.804000000000002
          - type: precision_at_5
            value: 16.05
          - type: recall_at_1
            value: 28.754
          - type: recall_at_10
            value: 66.31099999999999
          - type: recall_at_100
            value: 90.034
          - type: recall_at_1000
            value: 98.058
          - type: recall_at_20
            value: 74.411
          - type: recall_at_3
            value: 48.332
          - type: recall_at_5
            value: 56.548
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: 5003b3064772da1887988e05400cf3806fe491f2
        metrics:
          - type: map_at_1
            value: 30.579583333333332
          - type: map_at_10
            value: 42.696333333333335
          - type: map_at_100
            value: 44.078583333333334
          - type: map_at_1000
            value: 44.176333333333325
          - type: map_at_20
            value: 43.499833333333335
          - type: map_at_3
            value: 38.953583333333334
          - type: map_at_5
            value: 41.125583333333324
          - type: mrr_at_1
            value: 36.52666666666667
          - type: mrr_at_10
            value: 46.925666666666665
          - type: mrr_at_100
            value: 47.74333333333334
          - type: mrr_at_1000
            value: 47.78266666666667
          - type: mrr_at_20
            value: 47.42483333333333
          - type: mrr_at_3
            value: 44.068083333333334
          - type: mrr_at_5
            value: 45.82383333333333
          - type: ndcg_at_1
            value: 36.52666666666667
          - type: ndcg_at_10
            value: 49.1145
          - type: ndcg_at_100
            value: 54.340583333333335
          - type: ndcg_at_1000
            value: 55.90625
          - type: ndcg_at_20
            value: 51.32724999999999
          - type: ndcg_at_3
            value: 43.146
          - type: ndcg_at_5
            value: 46.146166666666666
          - type: precision_at_1
            value: 36.52666666666667
          - type: precision_at_10
            value: 8.866916666666667
          - type: precision_at_100
            value: 1.3526666666666667
          - type: precision_at_1000
            value: 0.1670833333333333
          - type: precision_at_20
            value: 5.199416666666667
          - type: precision_at_3
            value: 20.278333333333332
          - type: precision_at_5
            value: 14.614999999999997
          - type: recall_at_1
            value: 30.579583333333332
          - type: recall_at_10
            value: 63.618416666666675
          - type: recall_at_100
            value: 85.86858333333332
          - type: recall_at_1000
            value: 96.24825
          - type: recall_at_20
            value: 71.52533333333334
          - type: recall_at_3
            value: 47.18050000000001
          - type: recall_at_5
            value: 54.90683333333334
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-stats
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
        metrics:
          - type: map_at_1
            value: 26.180999999999997
          - type: map_at_10
            value: 36.4
          - type: map_at_100
            value: 37.464999999999996
          - type: map_at_1000
            value: 37.556
          - type: map_at_20
            value: 36.984
          - type: map_at_3
            value: 33.354
          - type: map_at_5
            value: 35.214
          - type: mrr_at_1
            value: 29.601
          - type: mrr_at_10
            value: 39.328
          - type: mrr_at_100
            value: 40.113
          - type: mrr_at_1000
            value: 40.176
          - type: mrr_at_20
            value: 39.751999999999995
          - type: mrr_at_3
            value: 36.58
          - type: mrr_at_5
            value: 38.313
          - type: ndcg_at_1
            value: 29.601
          - type: ndcg_at_10
            value: 42.037
          - type: ndcg_at_100
            value: 46.946
          - type: ndcg_at_1000
            value: 49.075
          - type: ndcg_at_20
            value: 43.827
          - type: ndcg_at_3
            value: 36.473
          - type: ndcg_at_5
            value: 39.482
          - type: precision_at_1
            value: 29.601
          - type: precision_at_10
            value: 7.009
          - type: precision_at_100
            value: 1.0290000000000001
          - type: precision_at_1000
            value: 0.129
          - type: precision_at_20
            value: 4.018
          - type: precision_at_3
            value: 16.36
          - type: precision_at_5
            value: 11.779
          - type: recall_at_1
            value: 26.180999999999997
          - type: recall_at_10
            value: 56.275
          - type: recall_at_100
            value: 78.61200000000001
          - type: recall_at_1000
            value: 93.887
          - type: recall_at_20
            value: 62.798
          - type: recall_at_3
            value: 41.157
          - type: recall_at_5
            value: 48.49
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-tex
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 46989137a86843e03a6195de44b09deda022eec7
        metrics:
          - type: map_at_1
            value: 20.205000000000002
          - type: map_at_10
            value: 29.947000000000003
          - type: map_at_100
            value: 31.342
          - type: map_at_1000
            value: 31.458000000000002
          - type: map_at_20
            value: 30.741000000000003
          - type: map_at_3
            value: 26.568
          - type: map_at_5
            value: 28.372999999999998
          - type: mrr_at_1
            value: 24.742
          - type: mrr_at_10
            value: 33.941
          - type: mrr_at_100
            value: 34.92
          - type: mrr_at_1000
            value: 34.981
          - type: mrr_at_20
            value: 34.509
          - type: mrr_at_3
            value: 31.097
          - type: mrr_at_5
            value: 32.631
          - type: ndcg_at_1
            value: 24.742
          - type: ndcg_at_10
            value: 35.884
          - type: ndcg_at_100
            value: 41.839999999999996
          - type: ndcg_at_1000
            value: 44.162
          - type: ndcg_at_20
            value: 38.273
          - type: ndcg_at_3
            value: 30.073
          - type: ndcg_at_5
            value: 32.617000000000004
          - type: precision_at_1
            value: 24.742
          - type: precision_at_10
            value: 6.958
          - type: precision_at_100
            value: 1.155
          - type: precision_at_1000
            value: 0.154
          - type: precision_at_20
            value: 4.202
          - type: precision_at_3
            value: 14.568
          - type: precision_at_5
            value: 10.757
          - type: recall_at_1
            value: 20.205000000000002
          - type: recall_at_10
            value: 49.603
          - type: recall_at_100
            value: 75.77000000000001
          - type: recall_at_1000
            value: 91.767
          - type: recall_at_20
            value: 58.309
          - type: recall_at_3
            value: 33.353
          - type: recall_at_5
            value: 39.947
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-unix
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
        metrics:
          - type: map_at_1
            value: 31.543
          - type: map_at_10
            value: 43.895
          - type: map_at_100
            value: 45.233000000000004
          - type: map_at_1000
            value: 45.314
          - type: map_at_20
            value: 44.707
          - type: map_at_3
            value: 40.165
          - type: map_at_5
            value: 42.353
          - type: mrr_at_1
            value: 37.5
          - type: mrr_at_10
            value: 47.814
          - type: mrr_at_100
            value: 48.701
          - type: mrr_at_1000
            value: 48.74
          - type: mrr_at_20
            value: 48.378
          - type: mrr_at_3
            value: 45.04
          - type: mrr_at_5
            value: 46.729
          - type: ndcg_at_1
            value: 37.5
          - type: ndcg_at_10
            value: 50.312999999999995
          - type: ndcg_at_100
            value: 55.696999999999996
          - type: ndcg_at_1000
            value: 57.135000000000005
          - type: ndcg_at_20
            value: 52.734
          - type: ndcg_at_3
            value: 44.263000000000005
          - type: ndcg_at_5
            value: 47.268
          - type: precision_at_1
            value: 37.5
          - type: precision_at_10
            value: 8.871
          - type: precision_at_100
            value: 1.278
          - type: precision_at_1000
            value: 0.149
          - type: precision_at_20
            value: 5.117
          - type: precision_at_3
            value: 20.709
          - type: precision_at_5
            value: 14.832
          - type: recall_at_1
            value: 31.543
          - type: recall_at_10
            value: 65.694
          - type: recall_at_100
            value: 88.105
          - type: recall_at_1000
            value: 97.38
          - type: recall_at_20
            value: 74.307
          - type: recall_at_3
            value: 49.254999999999995
          - type: recall_at_5
            value: 56.85
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-webmasters
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
        metrics:
          - type: map_at_1
            value: 29.325000000000003
          - type: map_at_10
            value: 40.653
          - type: map_at_100
            value: 42.568
          - type: map_at_1000
            value: 42.782
          - type: map_at_20
            value: 41.638999999999996
          - type: map_at_3
            value: 36.726
          - type: map_at_5
            value: 38.911
          - type: mrr_at_1
            value: 34.98
          - type: mrr_at_10
            value: 45.281
          - type: mrr_at_100
            value: 46.255
          - type: mrr_at_1000
            value: 46.29
          - type: mrr_at_20
            value: 45.94
          - type: mrr_at_3
            value: 41.831
          - type: mrr_at_5
            value: 44.045
          - type: ndcg_at_1
            value: 34.98
          - type: ndcg_at_10
            value: 47.629
          - type: ndcg_at_100
            value: 53.912000000000006
          - type: ndcg_at_1000
            value: 55.48
          - type: ndcg_at_20
            value: 50.281
          - type: ndcg_at_3
            value: 41.211999999999996
          - type: ndcg_at_5
            value: 44.529
          - type: precision_at_1
            value: 34.98
          - type: precision_at_10
            value: 9.229
          - type: precision_at_100
            value: 1.854
          - type: precision_at_1000
            value: 0.258
          - type: precision_at_20
            value: 5.8500000000000005
          - type: precision_at_3
            value: 19.631
          - type: precision_at_5
            value: 14.506
          - type: recall_at_1
            value: 29.325000000000003
          - type: recall_at_10
            value: 61.894000000000005
          - type: recall_at_100
            value: 88.684
          - type: recall_at_1000
            value: 97.83800000000001
          - type: recall_at_20
            value: 71.758
          - type: recall_at_3
            value: 44.265
          - type: recall_at_5
            value: 53.051
      - task:
          type: Retrieval
        dataset:
          type: mteb/cqadupstack-wordpress
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 23.133
          - type: map_at_10
            value: 33.263
          - type: map_at_100
            value: 34.496
          - type: map_at_1000
            value: 34.582
          - type: map_at_20
            value: 33.983999999999995
          - type: map_at_3
            value: 30.12
          - type: map_at_5
            value: 31.906000000000002
          - type: mrr_at_1
            value: 25.507999999999996
          - type: mrr_at_10
            value: 35.663
          - type: mrr_at_100
            value: 36.659000000000006
          - type: mrr_at_1000
            value: 36.714
          - type: mrr_at_20
            value: 36.236000000000004
          - type: mrr_at_3
            value: 32.748
          - type: mrr_at_5
            value: 34.365
          - type: ndcg_at_1
            value: 25.507999999999996
          - type: ndcg_at_10
            value: 38.968
          - type: ndcg_at_100
            value: 44.674
          - type: ndcg_at_1000
            value: 46.725
          - type: ndcg_at_20
            value: 41.282000000000004
          - type: ndcg_at_3
            value: 33.038000000000004
          - type: ndcg_at_5
            value: 35.909
          - type: precision_at_1
            value: 25.507999999999996
          - type: precision_at_10
            value: 6.285
          - type: precision_at_100
            value: 0.98
          - type: precision_at_1000
            value: 0.128
          - type: precision_at_20
            value: 3.7249999999999996
          - type: precision_at_3
            value: 14.171
          - type: precision_at_5
            value: 10.314
          - type: recall_at_1
            value: 23.133
          - type: recall_at_10
            value: 54.042
          - type: recall_at_100
            value: 80.01599999999999
          - type: recall_at_1000
            value: 95.05799999999999
          - type: recall_at_20
            value: 62.643
          - type: recall_at_3
            value: 38.367000000000004
          - type: recall_at_5
            value: 45.123000000000005
      - task:
          type: Retrieval
        dataset:
          type: mteb/climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
        metrics:
          - type: map_at_1
            value: 13.923
          - type: map_at_10
            value: 23.415
          - type: map_at_100
            value: 25.389
          - type: map_at_1000
            value: 25.539
          - type: map_at_20
            value: 24.462
          - type: map_at_3
            value: 19.719
          - type: map_at_5
            value: 21.75
          - type: mrr_at_1
            value: 31.205
          - type: mrr_at_10
            value: 43.196
          - type: mrr_at_100
            value: 44.039
          - type: mrr_at_1000
            value: 44.071
          - type: mrr_at_20
            value: 43.744
          - type: mrr_at_3
            value: 40.033
          - type: mrr_at_5
            value: 41.967
          - type: ndcg_at_1
            value: 31.205
          - type: ndcg_at_10
            value: 32.304
          - type: ndcg_at_100
            value: 39.717
          - type: ndcg_at_1000
            value: 42.559999999999995
          - type: ndcg_at_20
            value: 35.166
          - type: ndcg_at_3
            value: 26.955000000000002
          - type: ndcg_at_5
            value: 28.967
          - type: precision_at_1
            value: 31.205
          - type: precision_at_10
            value: 9.948
          - type: precision_at_100
            value: 1.7870000000000001
          - type: precision_at_1000
            value: 0.233
          - type: precision_at_20
            value: 6.205
          - type: precision_at_3
            value: 20.108999999999998
          - type: precision_at_5
            value: 15.453
          - type: recall_at_1
            value: 13.923
          - type: recall_at_10
            value: 37.885000000000005
          - type: recall_at_100
            value: 63.352
          - type: recall_at_1000
            value: 79.372
          - type: recall_at_20
            value: 45.954
          - type: recall_at_3
            value: 24.511
          - type: recall_at_5
            value: 30.451
      - task:
          type: Retrieval
        dataset:
          type: mteb/dbpedia
          name: MTEB DBPedia
          config: default
          split: test
          revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
        metrics:
          - type: map_at_1
            value: 9.584
          - type: map_at_10
            value: 23.432
          - type: map_at_100
            value: 32.513
          - type: map_at_1000
            value: 34.27
          - type: map_at_20
            value: 27.18
          - type: map_at_3
            value: 16.145
          - type: map_at_5
            value: 19.405
          - type: mrr_at_1
            value: 74.5
          - type: mrr_at_10
            value: 81.233
          - type: mrr_at_100
            value: 81.463
          - type: mrr_at_1000
            value: 81.46900000000001
          - type: mrr_at_20
            value: 81.394
          - type: mrr_at_3
            value: 79.958
          - type: mrr_at_5
            value: 80.808
          - type: ndcg_at_1
            value: 62.125
          - type: ndcg_at_10
            value: 48.047000000000004
          - type: ndcg_at_100
            value: 52.251999999999995
          - type: ndcg_at_1000
            value: 59.353
          - type: ndcg_at_20
            value: 47.264
          - type: ndcg_at_3
            value: 52.891999999999996
          - type: ndcg_at_5
            value: 50.766999999999996
          - type: precision_at_1
            value: 74.5
          - type: precision_at_10
            value: 38.15
          - type: precision_at_100
            value: 11.51
          - type: precision_at_1000
            value: 2.183
          - type: precision_at_20
            value: 28.749999999999996
          - type: precision_at_3
            value: 56.25
          - type: precision_at_5
            value: 49.1
          - type: recall_at_1
            value: 9.584
          - type: recall_at_10
            value: 29.215999999999998
          - type: recall_at_100
            value: 57.914
          - type: recall_at_1000
            value: 80.67699999999999
          - type: recall_at_20
            value: 37.358000000000004
          - type: recall_at_3
            value: 17.422
          - type: recall_at_5
            value: 22.345000000000002
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 91.36000000000001
          - type: f1
            value: 87.72724279223316
      - task:
          type: Retrieval
        dataset:
          type: mteb/fever
          name: MTEB FEVER
          config: default
          split: test
          revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
        metrics:
          - type: map_at_1
            value: 78.81700000000001
          - type: map_at_10
            value: 86.392
          - type: map_at_100
            value: 86.6
          - type: map_at_1000
            value: 86.611
          - type: map_at_20
            value: 86.521
          - type: map_at_3
            value: 85.31
          - type: map_at_5
            value: 86.047
          - type: mrr_at_1
            value: 84.878
          - type: mrr_at_10
            value: 90.359
          - type: mrr_at_100
            value: 90.426
          - type: mrr_at_1000
            value: 90.427
          - type: mrr_at_20
            value: 90.405
          - type: mrr_at_3
            value: 89.761
          - type: mrr_at_5
            value: 90.191
          - type: ndcg_at_1
            value: 84.878
          - type: ndcg_at_10
            value: 89.459
          - type: ndcg_at_100
            value: 90.171
          - type: ndcg_at_1000
            value: 90.349
          - type: ndcg_at_20
            value: 89.788
          - type: ndcg_at_3
            value: 87.908
          - type: ndcg_at_5
            value: 88.844
          - type: precision_at_1
            value: 84.878
          - type: precision_at_10
            value: 10.639
          - type: precision_at_100
            value: 1.123
          - type: precision_at_1000
            value: 0.11499999999999999
          - type: precision_at_20
            value: 5.427
          - type: precision_at_3
            value: 33.333
          - type: precision_at_5
            value: 20.696
          - type: recall_at_1
            value: 78.81700000000001
          - type: recall_at_10
            value: 94.959
          - type: recall_at_100
            value: 97.72800000000001
          - type: recall_at_1000
            value: 98.791
          - type: recall_at_20
            value: 96.036
          - type: recall_at_3
            value: 90.727
          - type: recall_at_5
            value: 93.12899999999999
      - task:
          type: Retrieval
        dataset:
          type: mteb/fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: 27a168819829fe9bcd655c2df245fb19452e8e06
        metrics:
          - type: map_at_1
            value: 29.596
          - type: map_at_10
            value: 50.833
          - type: map_at_100
            value: 53.034000000000006
          - type: map_at_1000
            value: 53.135
          - type: map_at_20
            value: 52.195
          - type: map_at_3
            value: 44.247
          - type: map_at_5
            value: 48.107
          - type: mrr_at_1
            value: 57.87
          - type: mrr_at_10
            value: 65.566
          - type: mrr_at_100
            value: 66.15299999999999
          - type: mrr_at_1000
            value: 66.168
          - type: mrr_at_20
            value: 65.923
          - type: mrr_at_3
            value: 63.55499999999999
          - type: mrr_at_5
            value: 64.727
          - type: ndcg_at_1
            value: 57.87
          - type: ndcg_at_10
            value: 58.943999999999996
          - type: ndcg_at_100
            value: 65.283
          - type: ndcg_at_1000
            value: 66.706
          - type: ndcg_at_20
            value: 61.778999999999996
          - type: ndcg_at_3
            value: 54.554
          - type: ndcg_at_5
            value: 56.159000000000006
          - type: precision_at_1
            value: 57.87
          - type: precision_at_10
            value: 16.435
          - type: precision_at_100
            value: 2.307
          - type: precision_at_1000
            value: 0.256
          - type: precision_at_20
            value: 9.522
          - type: precision_at_3
            value: 36.986000000000004
          - type: precision_at_5
            value: 27.16
          - type: recall_at_1
            value: 29.596
          - type: recall_at_10
            value: 66.705
          - type: recall_at_100
            value: 89.45
          - type: recall_at_1000
            value: 97.758
          - type: recall_at_20
            value: 75.13300000000001
          - type: recall_at_3
            value: 49.689
          - type: recall_at_5
            value: 57.701
      - task:
          type: Retrieval
        dataset:
          type: mteb/hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: ab518f4d6fcca38d87c25209f94beba119d02014
        metrics:
          - type: map_at_1
            value: 42.532
          - type: map_at_10
            value: 71.931
          - type: map_at_100
            value: 72.623
          - type: map_at_1000
            value: 72.662
          - type: map_at_20
            value: 72.355
          - type: map_at_3
            value: 68.72200000000001
          - type: map_at_5
            value: 70.813
          - type: mrr_at_1
            value: 85.064
          - type: mrr_at_10
            value: 89.69500000000001
          - type: mrr_at_100
            value: 89.792
          - type: mrr_at_1000
            value: 89.795
          - type: mrr_at_20
            value: 89.759
          - type: mrr_at_3
            value: 89.129
          - type: mrr_at_5
            value: 89.5
          - type: ndcg_at_1
            value: 85.064
          - type: ndcg_at_10
            value: 78.86999999999999
          - type: ndcg_at_100
            value: 81.134
          - type: ndcg_at_1000
            value: 81.862
          - type: ndcg_at_20
            value: 79.888
          - type: ndcg_at_3
            value: 74.579
          - type: ndcg_at_5
            value: 77.086
          - type: precision_at_1
            value: 85.064
          - type: precision_at_10
            value: 16.433
          - type: precision_at_100
            value: 1.818
          - type: precision_at_1000
            value: 0.191
          - type: precision_at_20
            value: 8.545
          - type: precision_at_3
            value: 48.508
          - type: precision_at_5
            value: 31.084
          - type: recall_at_1
            value: 42.532
          - type: recall_at_10
            value: 82.167
          - type: recall_at_100
            value: 90.905
          - type: recall_at_1000
            value: 95.699
          - type: recall_at_20
            value: 85.449
          - type: recall_at_3
            value: 72.762
          - type: recall_at_5
            value: 77.711
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 96.91919999999999
          - type: ap
            value: 95.88443935380744
          - type: f1
            value: 96.91873838978964
      - task:
          type: Retrieval
        dataset:
          type: mteb/msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: c5a29a104738b98a9e76336939199e264163d4a0
        metrics:
          - type: map_at_1
            value: 21.747
          - type: map_at_10
            value: 34.764
          - type: map_at_100
            value: 35.981
          - type: map_at_1000
            value: 36.027
          - type: map_at_20
            value: 35.557
          - type: map_at_3
            value: 30.770999999999997
          - type: map_at_5
            value: 33.07
          - type: mrr_at_1
            value: 22.421
          - type: mrr_at_10
            value: 35.417
          - type: mrr_at_100
            value: 36.57
          - type: mrr_at_1000
            value: 36.61
          - type: mrr_at_20
            value: 36.174
          - type: mrr_at_3
            value: 31.516
          - type: mrr_at_5
            value: 33.783
          - type: ndcg_at_1
            value: 22.421
          - type: ndcg_at_10
            value: 42.003
          - type: ndcg_at_100
            value: 47.674
          - type: ndcg_at_1000
            value: 48.783
          - type: ndcg_at_20
            value: 44.789
          - type: ndcg_at_3
            value: 33.918
          - type: ndcg_at_5
            value: 38.011
          - type: precision_at_1
            value: 22.421
          - type: precision_at_10
            value: 6.712
          - type: precision_at_100
            value: 0.9520000000000001
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_20
            value: 3.9309999999999996
          - type: precision_at_3
            value: 14.632000000000001
          - type: precision_at_5
            value: 10.845
          - type: recall_at_1
            value: 21.747
          - type: recall_at_10
            value: 64.2
          - type: recall_at_100
            value: 90.04100000000001
          - type: recall_at_1000
            value: 98.41499999999999
          - type: recall_at_20
            value: 74.982
          - type: recall_at_3
            value: 42.303000000000004
          - type: recall_at_5
            value: 52.11
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 99.02872777017784
          - type: f1
            value: 98.8785703018425
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 90.93935248518011
          - type: f1
            value: 75.46510480635821
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 82.49831876260927
          - type: f1
            value: 79.43439001730579
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 84.50235373234702
          - type: f1
            value: 84.03906668934695
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 42.634572576984716
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 40.96861872930255
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 31.986207669202933
          - type: mrr
            value: 33.11375583060012
      - task:
          type: Retrieval
        dataset:
          type: mteb/nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
        metrics:
          - type: map_at_1
            value: 6.783
          - type: map_at_10
            value: 16.276
          - type: map_at_100
            value: 21.324
          - type: map_at_1000
            value: 23.166
          - type: map_at_20
            value: 18.383
          - type: map_at_3
            value: 11.296000000000001
          - type: map_at_5
            value: 13.504
          - type: mrr_at_1
            value: 53.559999999999995
          - type: mrr_at_10
            value: 61.589000000000006
          - type: mrr_at_100
            value: 62.11600000000001
          - type: mrr_at_1000
            value: 62.158
          - type: mrr_at_20
            value: 61.976
          - type: mrr_at_3
            value: 59.855999999999995
          - type: mrr_at_5
            value: 60.877
          - type: ndcg_at_1
            value: 50.15500000000001
          - type: ndcg_at_10
            value: 42.598
          - type: ndcg_at_100
            value: 39.15
          - type: ndcg_at_1000
            value: 47.888999999999996
          - type: ndcg_at_20
            value: 39.956
          - type: ndcg_at_3
            value: 46.836
          - type: ndcg_at_5
            value: 45.001000000000005
          - type: precision_at_1
            value: 52.322
          - type: precision_at_10
            value: 32.601
          - type: precision_at_100
            value: 10.145999999999999
          - type: precision_at_1000
            value: 2.358
          - type: precision_at_20
            value: 24.025
          - type: precision_at_3
            value: 44.169000000000004
          - type: precision_at_5
            value: 39.628
          - type: recall_at_1
            value: 6.783
          - type: recall_at_10
            value: 21.175
          - type: recall_at_100
            value: 40.097
          - type: recall_at_1000
            value: 71.65
          - type: recall_at_20
            value: 26.465
          - type: recall_at_3
            value: 12.589
          - type: recall_at_5
            value: 15.867999999999999
      - task:
          type: Retrieval
        dataset:
          type: mteb/nq
          name: MTEB NQ
          config: default
          split: test
          revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
        metrics:
          - type: map_at_1
            value: 43.376
          - type: map_at_10
            value: 60.968
          - type: map_at_100
            value: 61.614999999999995
          - type: map_at_1000
            value: 61.626000000000005
          - type: map_at_20
            value: 61.441
          - type: map_at_3
            value: 56.858
          - type: map_at_5
            value: 59.476
          - type: mrr_at_1
            value: 48.841
          - type: mrr_at_10
            value: 63.366
          - type: mrr_at_100
            value: 63.79
          - type: mrr_at_1000
            value: 63.797000000000004
          - type: mrr_at_20
            value: 63.682
          - type: mrr_at_3
            value: 60.535000000000004
          - type: mrr_at_5
            value: 62.348000000000006
          - type: ndcg_at_1
            value: 48.841
          - type: ndcg_at_10
            value: 68.362
          - type: ndcg_at_100
            value: 70.799
          - type: ndcg_at_1000
            value: 71.004
          - type: ndcg_at_20
            value: 69.804
          - type: ndcg_at_3
            value: 61.251
          - type: ndcg_at_5
            value: 65.28500000000001
          - type: precision_at_1
            value: 48.841
          - type: precision_at_10
            value: 10.588000000000001
          - type: precision_at_100
            value: 1.194
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_20
            value: 5.646
          - type: precision_at_3
            value: 27.298000000000002
          - type: precision_at_5
            value: 18.841
          - type: recall_at_1
            value: 43.376
          - type: recall_at_10
            value: 88.053
          - type: recall_at_100
            value: 98.194
          - type: recall_at_1000
            value: 99.67200000000001
          - type: recall_at_20
            value: 93.318
          - type: recall_at_3
            value: 70.281
          - type: recall_at_5
            value: 79.28
      - task:
          type: Retrieval
        dataset:
          type: mteb/quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
        metrics:
          - type: map_at_1
            value: 71.477
          - type: map_at_10
            value: 85.548
          - type: map_at_100
            value: 86.187
          - type: map_at_1000
            value: 86.199
          - type: map_at_20
            value: 85.971
          - type: map_at_3
            value: 82.50999999999999
          - type: map_at_5
            value: 84.447
          - type: mrr_at_1
            value: 82.35
          - type: mrr_at_10
            value: 88.039
          - type: mrr_at_100
            value: 88.14699999999999
          - type: mrr_at_1000
            value: 88.14699999999999
          - type: mrr_at_20
            value: 88.12100000000001
          - type: mrr_at_3
            value: 87.048
          - type: mrr_at_5
            value: 87.73100000000001
          - type: ndcg_at_1
            value: 82.35
          - type: ndcg_at_10
            value: 89.024
          - type: ndcg_at_100
            value: 90.18599999999999
          - type: ndcg_at_1000
            value: 90.245
          - type: ndcg_at_20
            value: 89.67399999999999
          - type: ndcg_at_3
            value: 86.167
          - type: ndcg_at_5
            value: 87.779
          - type: precision_at_1
            value: 82.35
          - type: precision_at_10
            value: 13.565
          - type: precision_at_100
            value: 1.544
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_20
            value: 7.2010000000000005
          - type: precision_at_3
            value: 37.773
          - type: precision_at_5
            value: 24.924
          - type: recall_at_1
            value: 71.477
          - type: recall_at_10
            value: 95.821
          - type: recall_at_100
            value: 99.737
          - type: recall_at_1000
            value: 99.98599999999999
          - type: recall_at_20
            value: 97.90100000000001
          - type: recall_at_3
            value: 87.61
          - type: recall_at_5
            value: 92.135
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 66.43811157811552
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
        metrics:
          - type: v_measure
            value: 69.56403346330322
      - task:
          type: Retrieval
        dataset:
          type: mteb/scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
        metrics:
          - type: map_at_1
            value: 6.253
          - type: map_at_10
            value: 17.379
          - type: map_at_100
            value: 20.51
          - type: map_at_1000
            value: 20.881
          - type: map_at_20
            value: 18.983
          - type: map_at_3
            value: 12.061
          - type: map_at_5
            value: 14.546000000000001
          - type: mrr_at_1
            value: 30.8
          - type: mrr_at_10
            value: 43.814
          - type: mrr_at_100
            value: 44.883
          - type: mrr_at_1000
            value: 44.906
          - type: mrr_at_20
            value: 44.555
          - type: mrr_at_3
            value: 40.416999999999994
          - type: mrr_at_5
            value: 42.482
          - type: ndcg_at_1
            value: 30.8
          - type: ndcg_at_10
            value: 27.694999999999997
          - type: ndcg_at_100
            value: 38.248
          - type: ndcg_at_1000
            value: 43.547000000000004
          - type: ndcg_at_20
            value: 31.573
          - type: ndcg_at_3
            value: 26.239
          - type: ndcg_at_5
            value: 22.817999999999998
          - type: precision_at_1
            value: 30.8
          - type: precision_at_10
            value: 14.540000000000001
          - type: precision_at_100
            value: 2.9690000000000003
          - type: precision_at_1000
            value: 0.422
          - type: precision_at_20
            value: 9.5
          - type: precision_at_3
            value: 24.967
          - type: precision_at_5
            value: 20.22
          - type: recall_at_1
            value: 6.253
          - type: recall_at_10
            value: 29.465000000000003
          - type: recall_at_100
            value: 60.28
          - type: recall_at_1000
            value: 85.712
          - type: recall_at_20
            value: 38.578
          - type: recall_at_3
            value: 15.201999999999998
          - type: recall_at_5
            value: 20.507
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
        metrics:
          - type: cos_sim_pearson
            value: 86.88263045065128
          - type: cos_sim_spearman
            value: 83.2199052396249
          - type: euclidean_pearson
            value: 83.89316748784084
          - type: euclidean_spearman
            value: 82.80089923470608
          - type: manhattan_pearson
            value: 83.79340504513027
          - type: manhattan_spearman
            value: 82.57647453394455
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 87.23417612553622
          - type: cos_sim_spearman
            value: 79.40077017685032
          - type: euclidean_pearson
            value: 82.98069591415172
          - type: euclidean_spearman
            value: 77.72626690650102
          - type: manhattan_pearson
            value: 83.2549008896714
          - type: manhattan_spearman
            value: 77.97517379409553
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 89.94319057478221
          - type: cos_sim_spearman
            value: 89.57673217959568
          - type: euclidean_pearson
            value: 88.52164819479393
          - type: euclidean_spearman
            value: 89.28792930444656
          - type: manhattan_pearson
            value: 88.63748131889201
          - type: manhattan_spearman
            value: 89.5337354128652
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 87.0002285020644
          - type: cos_sim_spearman
            value: 84.85558709405255
          - type: euclidean_pearson
            value: 85.76743275817024
          - type: euclidean_spearman
            value: 84.7900299161083
          - type: manhattan_pearson
            value: 85.81372778099167
          - type: manhattan_spearman
            value: 84.88975144080597
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 89.90992300865088
          - type: cos_sim_spearman
            value: 89.89952259773258
          - type: euclidean_pearson
            value: 88.95472170794739
          - type: euclidean_spearman
            value: 89.79840257558794
          - type: manhattan_pearson
            value: 89.00903847816028
          - type: manhattan_spearman
            value: 89.99292271664685
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 85.75044299994977
          - type: cos_sim_spearman
            value: 86.31137676221347
          - type: euclidean_pearson
            value: 85.03198959400133
          - type: euclidean_spearman
            value: 85.62611072515675
          - type: manhattan_pearson
            value: 85.11681545306745
          - type: manhattan_spearman
            value: 85.75766564037835
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 91.85595137809975
          - type: cos_sim_spearman
            value: 91.19454529401669
          - type: euclidean_pearson
            value: 90.88727698604517
          - type: euclidean_spearman
            value: 90.93184869101279
          - type: manhattan_pearson
            value: 90.79591587599141
          - type: manhattan_spearman
            value: 90.75783237234161
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 71.60579944207497
          - type: cos_sim_spearman
            value: 70.08286575049202
          - type: euclidean_pearson
            value: 71.83195353568124
          - type: euclidean_spearman
            value: 70.3030975376705
          - type: manhattan_pearson
            value: 71.80222200714064
          - type: manhattan_spearman
            value: 70.04005646739672
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 89.65716781275425
          - type: cos_sim_spearman
            value: 89.90701888074334
          - type: euclidean_pearson
            value: 88.50498754631819
          - type: euclidean_spearman
            value: 88.88763469318933
          - type: manhattan_pearson
            value: 88.58398429591064
          - type: manhattan_spearman
            value: 89.0138386837653
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 89.26199160020026
          - type: mrr
            value: 96.86981772766087
      - task:
          type: Retrieval
        dataset:
          type: mteb/scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
        metrics:
          - type: map_at_1
            value: 62.827999999999996
          - type: map_at_10
            value: 74.028
          - type: map_at_100
            value: 74.264
          - type: map_at_1000
            value: 74.274
          - type: map_at_20
            value: 74.18599999999999
          - type: map_at_3
            value: 70.787
          - type: map_at_5
            value: 72.87
          - type: mrr_at_1
            value: 66.333
          - type: mrr_at_10
            value: 74.894
          - type: mrr_at_100
            value: 75.09599999999999
          - type: mrr_at_1000
            value: 75.105
          - type: mrr_at_20
            value: 75.024
          - type: mrr_at_3
            value: 72.833
          - type: mrr_at_5
            value: 73.917
          - type: ndcg_at_1
            value: 66.333
          - type: ndcg_at_10
            value: 78.82000000000001
          - type: ndcg_at_100
            value: 79.95
          - type: ndcg_at_1000
            value: 80.207
          - type: ndcg_at_20
            value: 79.324
          - type: ndcg_at_3
            value: 73.87899999999999
          - type: ndcg_at_5
            value: 76.399
          - type: precision_at_1
            value: 66.333
          - type: precision_at_10
            value: 10.5
          - type: precision_at_100
            value: 1.11
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_20
            value: 5.367
          - type: precision_at_3
            value: 29.110999999999997
          - type: precision_at_5
            value: 19.333
          - type: recall_at_1
            value: 62.827999999999996
          - type: recall_at_10
            value: 92.667
          - type: recall_at_100
            value: 98
          - type: recall_at_1000
            value: 100
          - type: recall_at_20
            value: 94.5
          - type: recall_at_3
            value: 79.5
          - type: recall_at_5
            value: 85.739
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.85940594059406
          - type: cos_sim_ap
            value: 96.72065839344104
          - type: cos_sim_f1
            value: 92.85714285714286
          - type: cos_sim_precision
            value: 93.42105263157895
          - type: cos_sim_recall
            value: 92.30000000000001
          - type: dot_accuracy
            value: 99.84752475247525
          - type: dot_ap
            value: 96.41536649209695
          - type: dot_f1
            value: 92.24572004028197
          - type: dot_precision
            value: 92.90060851926978
          - type: dot_recall
            value: 91.60000000000001
          - type: euclidean_accuracy
            value: 99.86039603960396
          - type: euclidean_ap
            value: 96.63078081708719
          - type: euclidean_f1
            value: 92.87518948964124
          - type: euclidean_precision
            value: 93.87129724208376
          - type: euclidean_recall
            value: 91.9
          - type: manhattan_accuracy
            value: 99.86435643564356
          - type: manhattan_ap
            value: 96.71272943532432
          - type: manhattan_f1
            value: 93.05625950329447
          - type: manhattan_precision
            value: 94.34737923946557
          - type: manhattan_recall
            value: 91.8
          - type: max_accuracy
            value: 99.86435643564356
          - type: max_ap
            value: 96.72065839344104
          - type: max_f1
            value: 93.05625950329447
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 75.95483275621876
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 46.20364113200157
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 56.2577092438525
          - type: mrr
            value: 57.40251782531194
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.492357459875645
          - type: cos_sim_spearman
            value: 30.868968719156825
          - type: dot_pearson
            value: 29.44619482351129
          - type: dot_spearman
            value: 31.295984532577215
      - task:
          type: Retrieval
        dataset:
          type: mteb/trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
        metrics:
          - type: map_at_1
            value: 0.22200000000000003
          - type: map_at_10
            value: 1.9290000000000003
          - type: map_at_100
            value: 12.435
          - type: map_at_1000
            value: 32.352
          - type: map_at_20
            value: 3.496
          - type: map_at_3
            value: 0.637
          - type: map_at_5
            value: 1.016
          - type: mrr_at_1
            value: 86
          - type: mrr_at_10
            value: 92.333
          - type: mrr_at_100
            value: 92.333
          - type: mrr_at_1000
            value: 92.333
          - type: mrr_at_20
            value: 92.333
          - type: mrr_at_3
            value: 92
          - type: mrr_at_5
            value: 92
          - type: ndcg_at_1
            value: 81
          - type: ndcg_at_10
            value: 75.32900000000001
          - type: ndcg_at_100
            value: 62.756
          - type: ndcg_at_1000
            value: 59.232
          - type: ndcg_at_20
            value: 73.393
          - type: ndcg_at_3
            value: 78.469
          - type: ndcg_at_5
            value: 76.953
          - type: precision_at_1
            value: 86
          - type: precision_at_10
            value: 79.4
          - type: precision_at_100
            value: 64.94
          - type: precision_at_1000
            value: 26.332
          - type: precision_at_20
            value: 77.3
          - type: precision_at_3
            value: 82.667
          - type: precision_at_5
            value: 80.4
          - type: recall_at_1
            value: 0.22200000000000003
          - type: recall_at_10
            value: 2.113
          - type: recall_at_100
            value: 16.02
          - type: recall_at_1000
            value: 57.227
          - type: recall_at_20
            value: 4.036
          - type: recall_at_3
            value: 0.6689999999999999
          - type: recall_at_5
            value: 1.076
      - task:
          type: Retrieval
        dataset:
          type: mteb/touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
        metrics:
          - type: map_at_1
            value: 2.83
          - type: map_at_10
            value: 8.981
          - type: map_at_100
            value: 14.796000000000001
          - type: map_at_1000
            value: 16.451999999999998
          - type: map_at_20
            value: 11.361
          - type: map_at_3
            value: 5.143
          - type: map_at_5
            value: 6.537
          - type: mrr_at_1
            value: 36.735
          - type: mrr_at_10
            value: 50.99399999999999
          - type: mrr_at_100
            value: 51.775000000000006
          - type: mrr_at_1000
            value: 51.775000000000006
          - type: mrr_at_20
            value: 51.39
          - type: mrr_at_3
            value: 47.278999999999996
          - type: mrr_at_5
            value: 49.626
          - type: ndcg_at_1
            value: 34.694
          - type: ndcg_at_10
            value: 24.061
          - type: ndcg_at_100
            value: 35.832
          - type: ndcg_at_1000
            value: 47.875
          - type: ndcg_at_20
            value: 25.022
          - type: ndcg_at_3
            value: 27.939999999999998
          - type: ndcg_at_5
            value: 25.246000000000002
          - type: precision_at_1
            value: 36.735
          - type: precision_at_10
            value: 20.204
          - type: precision_at_100
            value: 7.224
          - type: precision_at_1000
            value: 1.516
          - type: precision_at_20
            value: 15.714
          - type: precision_at_3
            value: 27.211000000000002
          - type: precision_at_5
            value: 23.265
          - type: recall_at_1
            value: 2.83
          - type: recall_at_10
            value: 14.564
          - type: recall_at_100
            value: 45.251000000000005
          - type: recall_at_1000
            value: 81.849
          - type: recall_at_20
            value: 22.31
          - type: recall_at_3
            value: 6.065
          - type: recall_at_5
            value: 8.588
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
        metrics:
          - type: accuracy
            value: 91.17320000000001
          - type: ap
            value: 41.18509354980418
          - type: f1
            value: 77.77470860794351
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 77.92869269949067
          - type: f1
            value: 78.23271267071486
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 59.59735858830448
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 87.81069321094355
          - type: cos_sim_ap
            value: 79.1522153826438
          - type: cos_sim_f1
            value: 72.83363802559415
          - type: cos_sim_precision
            value: 67.678369195923
          - type: cos_sim_recall
            value: 78.83905013192613
          - type: dot_accuracy
            value: 87.369613160875
          - type: dot_ap
            value: 78.51617049363121
          - type: dot_f1
            value: 71.89735998026153
          - type: dot_precision
            value: 67.516218721038
          - type: dot_recall
            value: 76.88654353562005
          - type: euclidean_accuracy
            value: 87.72724563390356
          - type: euclidean_ap
            value: 78.45799796334607
          - type: euclidean_f1
            value: 72.7159880834161
          - type: euclidean_precision
            value: 68.65916549460853
          - type: euclidean_recall
            value: 77.28232189973615
          - type: manhattan_accuracy
            value: 87.57823210347499
          - type: manhattan_ap
            value: 78.24705251626389
          - type: manhattan_f1
            value: 72.34365129500948
          - type: manhattan_precision
            value: 69.4060606060606
          - type: manhattan_recall
            value: 75.54089709762533
          - type: max_accuracy
            value: 87.81069321094355
          - type: max_ap
            value: 79.1522153826438
          - type: max_f1
            value: 72.83363802559415
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 89.76597974152986
          - type: cos_sim_ap
            value: 87.15717597277224
          - type: cos_sim_f1
            value: 79.71815316150567
          - type: cos_sim_precision
            value: 76.89776060671103
          - type: cos_sim_recall
            value: 82.75331074838313
          - type: dot_accuracy
            value: 89.49237396670159
          - type: dot_ap
            value: 86.69824401657353
          - type: dot_f1
            value: 79.39796433985418
          - type: dot_precision
            value: 74.7316211441772
          - type: dot_recall
            value: 84.68586387434554
          - type: euclidean_accuracy
            value: 89.65149221872937
          - type: euclidean_ap
            value: 86.98932847862545
          - type: euclidean_f1
            value: 79.65759212314929
          - type: euclidean_precision
            value: 76.17876466868105
          - type: euclidean_recall
            value: 83.46935632891899
          - type: manhattan_accuracy
            value: 89.63402802033609
          - type: manhattan_ap
            value: 86.99550128469285
          - type: manhattan_f1
            value: 79.61443655494647
          - type: manhattan_precision
            value: 76.23476361586697
          - type: manhattan_recall
            value: 83.30766861718509
          - type: max_accuracy
            value: 89.76597974152986
          - type: max_ap
            value: 87.15717597277224
          - type: max_f1
            value: 79.71815316150567

Model Details:

This embedding model is a fine-tuned 10.7B parameter LLM on the Intel Gaudi 2 processor using the upstage/SOLAR-10.7B-v1.0.

Date

July, 2024

Training Details

Two stage training:

  • General Text Embedding Training
  • Specific domains Emebedding Training

More technical details will be updated later.

Evaluation

The results of (MTEB)[https://huggingface.co/spaces/mteb/leaderboard] (English):