Inv's picture
Adding Evaluation Results (#1)
2c50339 verified
metadata
language:
  - en
  - zh
license: apache-2.0
tags:
  - Mixtral
  - openbmb/MiniCPM-2B-sft-bf16-llama-format
  - MoE
  - merge
  - mergekit
  - moerge
  - MiniCPM
base_model:
  - openbmb/MiniCPM-2B-sft-bf16-llama-format
model-index:
  - name: MoECPM-Untrained-4x2b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 46.76
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/MoECPM-Untrained-4x2b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 72.58
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/MoECPM-Untrained-4x2b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 53.21
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/MoECPM-Untrained-4x2b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 38.41
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/MoECPM-Untrained-4x2b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.51
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/MoECPM-Untrained-4x2b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 44.58
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Inv/MoECPM-Untrained-4x2b
          name: Open LLM Leaderboard

MoECPM Untrained 4x2b

Model Details

Model Description

A MoE model out of 4 MiniCPM-2B-sft models. Intended to be trained. This version probably does not perform well (if it works at all, lol. I haven't tested it).

Uses

  • Training

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 53.51
AI2 Reasoning Challenge (25-Shot) 46.76
HellaSwag (10-Shot) 72.58
MMLU (5-Shot) 53.21
TruthfulQA (0-shot) 38.41
Winogrande (5-shot) 65.51
GSM8k (5-shot) 44.58