xlsr300m_cv_8.0_nl
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with splittest
python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset mozilla-foundation/common_voice_8_0 --config nl --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id Iskaj/xlsr300m_cv_8.0_nl --dataset speech-recognition-community-v2/dev_data --config nl --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Inference
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "Iskaj/xlsr300m_cv_8.0_nl"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "nl", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
inputs = processor(resampled_audio, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
transcription[0].lower()
#'het kontine schip lag aangemeert in de aven'
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train Iskaj/xlsr300m_cv_8.0_nl
Evaluation results
- Test WER on Common Voice 8 NLself-reported46.940
- Test CER on Common Voice 8 NLself-reported21.650
- Test WER on Robust Speech Event - Dev Dataself-reported???
- Test CER on Robust Speech Event - Dev Dataself-reported???
- Test WER on Robust Speech Event - Test Dataself-reported42.560