JSWOOK/pyannote_2_finetuning

This model is a fine-tuned version of pyannote/speaker-diarization-3.1 on the diarizers-community/voxconverse dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1327
  • Model Preparation Time: 0.004
  • Der: 0.0499
  • False Alarm: 0.0304
  • Missed Detection: 0.0094
  • Confusion: 0.0101

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Der False Alarm Missed Detection Confusion
No log 1.0 21 0.1258 0.004 0.0486 0.0289 0.0104 0.0093
0.2277 2.0 42 0.1355 0.004 0.0509 0.0300 0.0097 0.0112
0.1872 3.0 63 0.1327 0.004 0.0494 0.0304 0.0095 0.0095
0.1649 4.0 84 0.1313 0.004 0.0492 0.0303 0.0094 0.0095
0.1535 5.0 105 0.1327 0.004 0.0499 0.0304 0.0094 0.0101

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
1.47M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for JSWOOK/pyannote_2_finetuning

Finetuned
(13)
this model

Dataset used to train JSWOOK/pyannote_2_finetuning