JacobLinCool's picture
End of training
22e2bf9 verified
metadata
library_name: peft
language:
  - en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - wft
  - whisper
  - automatic-speech-recognition
  - audio
  - speech
  - generated_from_trainer
datasets:
  - JacobLinCool/ami-disfluent
metrics:
  - wer
model-index:
  - name: whisper-large-v3-verbatim-1
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: JacobLinCool/ami-disfluent
          type: JacobLinCool/ami-disfluent
        metrics:
          - type: wer
            value: 32.322538548713894
            name: Wer

whisper-large-v3-verbatim-1

This model is a fine-tuned version of openai/whisper-large-v3 on the JacobLinCool/ami-disfluent dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1300
  • Wer: 32.3225
  • Cer: 45.5147
  • Decode Runtime: 141.5643
  • Wer Runtime: 0.1227
  • Cer Runtime: 0.2049

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer Cer Decode Runtime Wer Runtime Cer Runtime
No log 0 0 1.8283 63.2783 251.8035 164.5307 0.1838 0.3386
0.2617 0.1 100 0.2189 49.6995 178.3721 161.1098 0.1397 0.4071
0.1291 0.2 200 0.1452 50.3383 95.5275 143.0863 0.1342 0.2932
0.1418 0.3 300 0.1387 29.9186 74.6491 150.1053 0.0780 0.1514
0.1273 1.088 400 0.1372 30.8218 91.1134 166.0178 0.1252 0.2728
0.1139 1.188 500 0.1335 29.9117 101.9003 144.2796 0.1318 0.2934
0.1663 1.288 600 0.1306 31.8418 83.0183 149.9060 0.0826 0.1679
0.1275 2.076 700 0.1311 24.9665 29.6191 143.2151 0.0781 0.1135
0.1077 2.176 800 0.1304 25.9109 36.6217 143.4620 0.0770 0.1227
0.1711 2.276 900 0.1298 35.1729 45.0300 145.3294 0.0786 0.1310
0.0994 3.064 1000 0.1300 32.3225 45.5147 141.5643 0.1227 0.2049

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.0
  • Pytorch 2.4.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0