metadata
license: apache-2.0
tags:
- whisper
- finetune
- zh-TW
datasets:
- mozilla-foundation/common_voice_11_0
model-index:
- name: Whisper Medium TW
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: zh-TW
split: test
metrics:
- type: wer
value: 9.8
name: WER
Whisper Medium TW
This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 dataset.
Training and evaluation data
Training:
- mozilla-foundation/common_voice_11_0 (train+validation)
Evaluation:
Training procedure
- Datasets were augmented using audiomentations via PitchShift, TimeStretch, Gain, AddGaussianNoise transformations at
p=0.3
. - A space is added between each Chinese character, as demonstrated in the original paper. Effectively, WER == CER in this case.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- gradient_accumulation_steps: 32
- optimizer: Adam
- generation_max_length: 225,
- warmup_steps: 200
- max_steps: 2000,
- fp16: True,
- evaluation_strategy: "steps",
Framework versions
- Transformers 4.27.1
- Pytorch 2.0.1+cu117
- Datasets 2.13.1