JayHyeon's picture
End of training
2b0966c verified
---
base_model: JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep
datasets: trl-lib/ultrafeedback_binarized
library_name: transformers
model_name: Qwen2.5-0.5B-SFT-2e-5-2ep-IRPO_3e-7-3ep_1alp_0lam
tags:
- generated_from_trainer
- trl
- dpo
licence: license
---
# Model Card for Qwen2.5-0.5B-SFT-2e-5-2ep-IRPO_3e-7-3ep_1alp_0lam
This model is a fine-tuned version of [JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep](https://huggingface.co/JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep) on the [trl-lib/ultrafeedback_binarized](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="JayHyeon/Qwen2.5-0.5B-SFT-2e-5-2ep-IRPO_3e-7-3ep_1alp_0lam", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bonin147/huggingface/runs/5e79a6fs)
This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
### Framework versions
- TRL: 0.13.0.dev0
- Transformers: 4.47.0.dev0
- Pytorch: 2.5.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citations
Cite DPO as:
```bibtex
@inproceedings{rafailov2023direct,
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
year = 2023,
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```