metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- joetan/ep15
metrics:
- wer
model-index:
- name: whisper-medium-fine-tuned-ep15
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ep15
type: joetan/ep15
args: 'config: en, split: train'
metrics:
- name: Wer
type: wer
value: 90.83969465648855
whisper-medium-fine-tuned-ep15
This model is a fine-tuned version of openai/whisper-medium on the ep15 dataset. It achieves the following results on the evaluation set:
- Loss: 3.3931
- Wer: 90.8397
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0 | 100.0 | 100 | 3.2156 | 90.8397 |
0.0 | 200.0 | 200 | 3.3931 | 90.8397 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1