llama3.2-3b-hard / README.md
Jsoo's picture
./model_output/llama3.2-3b-hard
39a1fba verified
---
base_model: meta-llama/Llama-3.2-3B-Instruct
library_name: peft
license: llama3.2
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: llama3.2-3b-hard
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama3.2-3b-hard
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0052
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 2.6035 | 0.5202 | 100 | 2.2469 |
| 2.412 | 1.0403 | 200 | 2.1836 |
| 2.3523 | 1.5605 | 300 | 2.1436 |
| 2.3063 | 2.0806 | 400 | 2.1116 |
| 2.24 | 2.6008 | 500 | 2.0822 |
| 2.2205 | 3.1209 | 600 | 2.0610 |
| 2.169 | 3.6411 | 700 | 2.0429 |
| 2.1232 | 4.1612 | 800 | 2.0338 |
| 2.1088 | 4.6814 | 900 | 2.0237 |
| 2.0885 | 5.2016 | 1000 | 2.0192 |
| 2.0604 | 5.7217 | 1100 | 2.0126 |
| 2.0353 | 6.2419 | 1200 | 2.0069 |
| 1.9994 | 6.7620 | 1300 | 2.0035 |
| 1.9972 | 7.2822 | 1400 | 2.0057 |
| 1.9674 | 7.8023 | 1500 | 1.9955 |
| 1.9455 | 8.3225 | 1600 | 2.0008 |
| 1.9392 | 8.8427 | 1700 | 2.0010 |
| 1.9339 | 9.3628 | 1800 | 2.0055 |
| 1.9034 | 9.8830 | 1900 | 1.9982 |
| 1.8877 | 10.4031 | 2000 | 2.0052 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.45.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1