|
--- |
|
base_model: meta-llama/Llama-3.2-3B-Instruct |
|
library_name: peft |
|
license: llama3.2 |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: llama3.2-3b-hard |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama3.2-3b-hard |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0052 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 2.6035 | 0.5202 | 100 | 2.2469 | |
|
| 2.412 | 1.0403 | 200 | 2.1836 | |
|
| 2.3523 | 1.5605 | 300 | 2.1436 | |
|
| 2.3063 | 2.0806 | 400 | 2.1116 | |
|
| 2.24 | 2.6008 | 500 | 2.0822 | |
|
| 2.2205 | 3.1209 | 600 | 2.0610 | |
|
| 2.169 | 3.6411 | 700 | 2.0429 | |
|
| 2.1232 | 4.1612 | 800 | 2.0338 | |
|
| 2.1088 | 4.6814 | 900 | 2.0237 | |
|
| 2.0885 | 5.2016 | 1000 | 2.0192 | |
|
| 2.0604 | 5.7217 | 1100 | 2.0126 | |
|
| 2.0353 | 6.2419 | 1200 | 2.0069 | |
|
| 1.9994 | 6.7620 | 1300 | 2.0035 | |
|
| 1.9972 | 7.2822 | 1400 | 2.0057 | |
|
| 1.9674 | 7.8023 | 1500 | 1.9955 | |
|
| 1.9455 | 8.3225 | 1600 | 2.0008 | |
|
| 1.9392 | 8.8427 | 1700 | 2.0010 | |
|
| 1.9339 | 9.3628 | 1800 | 2.0055 | |
|
| 1.9034 | 9.8830 | 1900 | 1.9982 | |
|
| 1.8877 | 10.4031 | 2000 | 2.0052 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.45.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.20.1 |