metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:10K<n<100K
- loss:CosineSimilarityLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: Tech Writer
sentences:
- Tech Specialist
- Architectural Historian
- Order Selector (Picker)
- source_sentence: Controller
sentences:
- Assistant Controller
- Key Accounts Supervisor
- Cosmetologist - Plus Tips
- source_sentence: Accountant
sentences:
- Financial Accountant
- Manager, Corporate Sales
- Materials Sourcing Lead
- source_sentence: Planner III
sentences:
- Strategist
- Product Finance Manager
- Materials Sourcing Lead
- source_sentence: AP Analyst
sentences:
- AP Specialist
- ESCO Service Coordinator
- Boiler Tender Lead
pipeline_tag: sentence-similarity
SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("JuanIgnacioSolerno/all-mpnet-base-v2-sts")
# Run inference
sentences = [
'AP Analyst',
'AP Specialist',
'ESCO Service Coordinator',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 11,923 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 7.17 tokens
- max: 27 tokens
- min: 4 tokens
- mean: 4.0 tokens
- max: 4 tokens
- min: 0.0
- mean: 0.04
- max: 1.0
- Samples:
sentence1 sentence2 score Land Coordinator, Renewable Development
Energy Analyst
0.0
Customer Service Advocate - Remote within the state of Colorado
Energy Analyst
0.0
Global Head of Infrastructure
Energy Analyst
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 2,981 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 7.21 tokens
- max: 28 tokens
- min: 4 tokens
- mean: 4.0 tokens
- max: 4 tokens
- min: 0.0
- mean: 0.05
- max: 1.0
- Samples:
sentence1 sentence2 score IT Data Coordinator - Customer Data & Integrations Team
Energy Analyst
0.0
Warehouse Associate
Energy Analyst
0.0
Human Resources Manager
Energy Analyst
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.0.0.post200
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}