SpeechT5-Hausa-7 / README.md
Judah04's picture
End of training
480cda3 verified
|
raw
history blame
2.51 kB
metadata
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
model-index:
  - name: SpeechT5-Hausa-7
    results: []

SpeechT5-Hausa-7

This model is a fine-tuned version of microsoft/speecht5_tts on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.6236 1.8476 100 0.5467
0.5606 3.6952 200 0.5343
0.537 5.5427 300 0.4949
0.5195 7.3903 400 0.4839
0.511 9.2379 500 0.4760
0.5044 11.0855 600 0.4693
0.4944 12.9330 700 0.4693
0.4912 14.7806 800 0.4843
0.4792 16.6282 900 0.4737
0.4742 18.4758 1000 0.4659
0.4727 20.3233 1100 0.4659
0.4584 22.1709 1200 0.4637
0.4604 24.0185 1300 0.4618
0.4556 25.8661 1400 0.4637
0.4549 27.7136 1500 0.4606
0.4514 29.5612 1600 0.4629
0.4476 31.4088 1700 0.4611
0.4426 33.2564 1800 0.4636
0.4472 35.1039 1900 0.4680
0.4353 36.9515 2000 0.4667

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1