model10.0
This model is a fine-tuned version of microsoft/layoutlmv3-base on the datasetprepfrom_gcp dataset. It achieves the following results on the evaluation set:
- Loss: 0.3117
- Precision: 0.7824
- Recall: 0.7396
- F1: 0.7604
- Accuracy: 0.9481
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.1094 | 100 | 1.1070 | 0.0820 | 0.0037 | 0.0072 | 0.8202 |
No log | 0.2188 | 200 | 0.9957 | 0.0449 | 0.0049 | 0.0088 | 0.8244 |
No log | 0.3282 | 300 | 0.9355 | 0.1949 | 0.0590 | 0.0906 | 0.8338 |
No log | 0.4376 | 400 | 0.8255 | 0.2373 | 0.1223 | 0.1614 | 0.8453 |
1.0172 | 0.5470 | 500 | 0.7511 | 0.3185 | 0.1510 | 0.2049 | 0.8489 |
1.0172 | 0.6565 | 600 | 0.7203 | 0.3609 | 0.1997 | 0.2571 | 0.8510 |
1.0172 | 0.7659 | 700 | 0.6571 | 0.4256 | 0.2565 | 0.3200 | 0.8755 |
1.0172 | 0.8753 | 800 | 0.5845 | 0.4510 | 0.3127 | 0.3693 | 0.8873 |
1.0172 | 0.9847 | 900 | 0.5614 | 0.5053 | 0.3477 | 0.4119 | 0.8948 |
0.45 | 1.0941 | 1000 | 0.5126 | 0.5561 | 0.3818 | 0.4527 | 0.9042 |
0.45 | 1.2035 | 1100 | 0.5350 | 0.5790 | 0.4176 | 0.4852 | 0.9092 |
0.45 | 1.3129 | 1200 | 0.4846 | 0.5449 | 0.4562 | 0.4966 | 0.9068 |
0.45 | 1.4223 | 1300 | 0.4681 | 0.6153 | 0.4843 | 0.5420 | 0.9149 |
0.45 | 1.5317 | 1400 | 0.4807 | 0.6572 | 0.4874 | 0.5598 | 0.9164 |
0.2388 | 1.6411 | 1500 | 0.4096 | 0.5848 | 0.5264 | 0.5541 | 0.9146 |
0.2388 | 1.7505 | 1600 | 0.3991 | 0.6344 | 0.5474 | 0.5877 | 0.9203 |
0.2388 | 1.8600 | 1700 | 0.4044 | 0.5996 | 0.5691 | 0.5840 | 0.9185 |
0.2388 | 1.9694 | 1800 | 0.4065 | 0.6607 | 0.5869 | 0.6216 | 0.9258 |
0.2388 | 2.0788 | 1900 | 0.4159 | 0.6018 | 0.5802 | 0.5908 | 0.9123 |
0.1768 | 2.1882 | 2000 | 0.4203 | 0.6846 | 0.5822 | 0.6293 | 0.9268 |
0.1768 | 2.2976 | 2100 | 0.3934 | 0.6566 | 0.5954 | 0.6245 | 0.9276 |
0.1768 | 2.4070 | 2200 | 0.3879 | 0.7137 | 0.6038 | 0.6542 | 0.9313 |
0.1768 | 2.5164 | 2300 | 0.3829 | 0.5685 | 0.6326 | 0.5989 | 0.9175 |
0.1768 | 2.6258 | 2400 | 0.3508 | 0.7175 | 0.6191 | 0.6647 | 0.9328 |
0.1399 | 2.7352 | 2500 | 0.3215 | 0.6869 | 0.6311 | 0.6578 | 0.9327 |
0.1399 | 2.8446 | 2600 | 0.3271 | 0.7248 | 0.6171 | 0.6666 | 0.9358 |
0.1399 | 2.9540 | 2700 | 0.3226 | 0.6491 | 0.6544 | 0.6517 | 0.9277 |
0.1399 | 3.0635 | 2800 | 0.3336 | 0.6596 | 0.6386 | 0.6490 | 0.9278 |
0.1399 | 3.1729 | 2900 | 0.3423 | 0.6480 | 0.6624 | 0.6551 | 0.9314 |
0.1083 | 3.2823 | 3000 | 0.3698 | 0.7509 | 0.6566 | 0.7006 | 0.9372 |
0.1083 | 3.3917 | 3100 | 0.3353 | 0.6457 | 0.6649 | 0.6552 | 0.9287 |
0.1083 | 3.5011 | 3200 | 0.3391 | 0.7518 | 0.6626 | 0.7044 | 0.9383 |
0.1083 | 3.6105 | 3300 | 0.3314 | 0.7350 | 0.6699 | 0.7010 | 0.9381 |
0.1083 | 3.7199 | 3400 | 0.3338 | 0.6728 | 0.6832 | 0.6779 | 0.9347 |
0.0988 | 3.8293 | 3500 | 0.3239 | 0.7509 | 0.6753 | 0.7111 | 0.9369 |
0.0988 | 3.9387 | 3600 | 0.3481 | 0.7555 | 0.6564 | 0.7025 | 0.9395 |
0.0988 | 4.0481 | 3700 | 0.3231 | 0.6749 | 0.6883 | 0.6815 | 0.9348 |
0.0988 | 4.1575 | 3800 | 0.3581 | 0.7669 | 0.6699 | 0.7151 | 0.9411 |
0.0988 | 4.2670 | 3900 | 0.3213 | 0.7174 | 0.6873 | 0.7021 | 0.9389 |
0.0775 | 4.3764 | 4000 | 0.3244 | 0.7433 | 0.6738 | 0.7069 | 0.9387 |
0.0775 | 4.4858 | 4100 | 0.3275 | 0.7370 | 0.6868 | 0.7110 | 0.9405 |
0.0775 | 4.5952 | 4200 | 0.3197 | 0.7405 | 0.6997 | 0.7195 | 0.9413 |
0.0775 | 4.7046 | 4300 | 0.3183 | 0.7419 | 0.6935 | 0.7169 | 0.9415 |
0.0775 | 4.8140 | 4400 | 0.2961 | 0.7445 | 0.6933 | 0.7180 | 0.9408 |
0.0771 | 4.9234 | 4500 | 0.3195 | 0.7542 | 0.6986 | 0.7253 | 0.9426 |
0.0771 | 5.0328 | 4600 | 0.3295 | 0.7637 | 0.7010 | 0.7310 | 0.9435 |
0.0771 | 5.1422 | 4700 | 0.3204 | 0.7603 | 0.7006 | 0.7293 | 0.9434 |
0.0771 | 5.2516 | 4800 | 0.2992 | 0.7443 | 0.6995 | 0.7212 | 0.9395 |
0.0771 | 5.3611 | 4900 | 0.2978 | 0.7312 | 0.7033 | 0.7170 | 0.9393 |
0.0647 | 5.4705 | 5000 | 0.3324 | 0.7608 | 0.7079 | 0.7334 | 0.9432 |
0.0647 | 5.5799 | 5100 | 0.3356 | 0.7635 | 0.7038 | 0.7324 | 0.9430 |
0.0647 | 5.6893 | 5200 | 0.3121 | 0.7634 | 0.7121 | 0.7368 | 0.9430 |
0.0647 | 5.7987 | 5300 | 0.3392 | 0.7858 | 0.7003 | 0.7406 | 0.9448 |
0.0647 | 5.9081 | 5400 | 0.2952 | 0.7265 | 0.7220 | 0.7242 | 0.9412 |
0.0573 | 6.0175 | 5500 | 0.3070 | 0.7311 | 0.7211 | 0.7260 | 0.9429 |
0.0573 | 6.1269 | 5600 | 0.3207 | 0.7414 | 0.7241 | 0.7326 | 0.9435 |
0.0573 | 6.2363 | 5700 | 0.3130 | 0.7685 | 0.7231 | 0.7451 | 0.9455 |
0.0573 | 6.3457 | 5800 | 0.3441 | 0.7752 | 0.7139 | 0.7433 | 0.9447 |
0.0573 | 6.4551 | 5900 | 0.3196 | 0.7818 | 0.7128 | 0.7457 | 0.9458 |
0.0529 | 6.5646 | 6000 | 0.3369 | 0.7907 | 0.7164 | 0.7517 | 0.9456 |
0.0529 | 6.6740 | 6100 | 0.3059 | 0.7394 | 0.7267 | 0.7330 | 0.9435 |
0.0529 | 6.7834 | 6200 | 0.3043 | 0.7624 | 0.7231 | 0.7422 | 0.9444 |
0.0529 | 6.8928 | 6300 | 0.3028 | 0.7527 | 0.7252 | 0.7387 | 0.9441 |
0.0529 | 7.0022 | 6400 | 0.3089 | 0.7596 | 0.7293 | 0.7441 | 0.9457 |
0.0542 | 7.1116 | 6500 | 0.2927 | 0.7306 | 0.7286 | 0.7296 | 0.9408 |
0.0542 | 7.2210 | 6600 | 0.3178 | 0.7785 | 0.7274 | 0.7521 | 0.9456 |
0.0542 | 7.3304 | 6700 | 0.3267 | 0.7653 | 0.7304 | 0.7474 | 0.9450 |
0.0542 | 7.4398 | 6800 | 0.3254 | 0.7618 | 0.7280 | 0.7445 | 0.9450 |
0.0542 | 7.5492 | 6900 | 0.3240 | 0.7856 | 0.7254 | 0.7543 | 0.9464 |
0.0416 | 7.6586 | 7000 | 0.3203 | 0.7682 | 0.7319 | 0.7496 | 0.9463 |
0.0416 | 7.7681 | 7100 | 0.3176 | 0.7801 | 0.7299 | 0.7542 | 0.9468 |
0.0416 | 7.8775 | 7200 | 0.3012 | 0.7601 | 0.7355 | 0.7476 | 0.9470 |
0.0416 | 7.9869 | 7300 | 0.3092 | 0.7336 | 0.7377 | 0.7357 | 0.9436 |
0.0416 | 8.0963 | 7400 | 0.3025 | 0.7782 | 0.7349 | 0.7559 | 0.9480 |
0.0422 | 8.2057 | 7500 | 0.3046 | 0.7594 | 0.7340 | 0.7465 | 0.9459 |
0.0422 | 8.3151 | 7600 | 0.3113 | 0.7640 | 0.7332 | 0.7483 | 0.9458 |
0.0422 | 8.4245 | 7700 | 0.3002 | 0.7579 | 0.7394 | 0.7485 | 0.9461 |
0.0422 | 8.5339 | 7800 | 0.3173 | 0.7742 | 0.7321 | 0.7526 | 0.9464 |
0.0422 | 8.6433 | 7900 | 0.3084 | 0.7766 | 0.7334 | 0.7544 | 0.9467 |
0.041 | 8.7527 | 8000 | 0.3118 | 0.7829 | 0.7325 | 0.7569 | 0.9477 |
0.041 | 8.8621 | 8100 | 0.3145 | 0.7788 | 0.7389 | 0.7583 | 0.9473 |
0.041 | 8.9716 | 8200 | 0.3123 | 0.7788 | 0.7366 | 0.7571 | 0.9480 |
0.041 | 9.0810 | 8300 | 0.3088 | 0.7754 | 0.7398 | 0.7572 | 0.9476 |
0.041 | 9.1904 | 8400 | 0.3101 | 0.7804 | 0.7415 | 0.7604 | 0.9491 |
0.0323 | 9.2998 | 8500 | 0.3152 | 0.7829 | 0.7357 | 0.7785 | 0.9482 |
0.0323 | 9.4092 | 8600 | 0.3061 | 0.7734 | 0.7398 | 0.7762 | 0.9476 |
0.0323 | 9.5186 | 8700 | 0.3086 | 0.7636 | 0.7437 | 0.7735 | 0.9476 |
0.0323 | 9.6280 | 8800 | 0.3162 | 0.7723 | 0.7390 | 0.7553 | 0.9476 |
0.0323 | 9.7374 | 8900 | 0.3070 | 0.7605 | 0.7419 | 0.7811 | 0.9467 |
0.0357 | 9.8468 | 9000 | 0.3117 | 0.7824 | 0.7396 | 0.7804 | 0.9481 |
0.0357 | 9.9562 | 9100 | 0.3130 | 0.7750 | 0.7396 | 0.7869 | 0.9472 |
0.0357 | 10.0656 | 9200 | 0.3095 | 0.7673 | 0.7405 | 0.7837 | 0.9476 |
0.0357 | 10.1751 | 9300 | 0.3179 | 0.7868 | 0.7357 | 0.7804 | 0.9477 |
0.0357 | 10.2845 | 9400 | 0.3077 | 0.7645 | 0.7405 | 0.7823 | 0.9472 |
0.0359 | 10.3939 | 9500 | 0.3128 | 0.7798 | 0.7366 | 0.7876 | 0.9476 |
0.0359 | 10.5033 | 9600 | 0.3151 | 0.7784 | 0.7377 | 0.7875 | 0.9475 |
0.0359 | 10.6127 | 9700 | 0.3138 | 0.7744 | 0.7420 | 0.7879 | 0.9478 |
0.0359 | 10.7221 | 9800 | 0.3115 | 0.7688 | 0.7415 | 0.7849 | 0.9475 |
0.0359 | 10.8315 | 9900 | 0.3097 | 0.7673 | 0.7411 | 0.7840 | 0.9472 |
0.0301 | 10.9409 | 10000 | 0.3095 | 0.7674 | 0.7409 | 0.7989 | 0.9474 |
Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Jyotiyadav/model10.0
Base model
microsoft/layoutlmv3-baseEvaluation results
- Precision on datasetprepfrom_gcptest set self-reported0.782
- Recall on datasetprepfrom_gcptest set self-reported0.740
- F1 on datasetprepfrom_gcptest set self-reported0.798
- Accuracy on datasetprepfrom_gcptest set self-reported0.948