File size: 9,422 Bytes
ce167af
389b0fc
3f0dd74
ce167af
389b0fc
ce167af
389b0fc
 
ce167af
3f0dd74
 
ce167af
 
3f0dd74
ce167af
389b0fc
 
 
3f0dd74
 
389b0fc
3f0dd74
 
 
 
389b0fc
 
3f0dd74
389b0fc
3f0dd74
389b0fc
 
 
3f0dd74
389b0fc
3f0dd74
 
389b0fc
3f0dd74
 
 
 
389b0fc
 
 
 
3f0dd74
389b0fc
 
 
3f0dd74
ce167af
 
389b0fc
ce167af
389b0fc
 
 
 
 
 
 
 
ce167af
 
 
 
 
389b0fc
 
 
 
 
 
 
 
 
ce167af
389b0fc
ce167af
 
 
389b0fc
 
ce167af
 
 
389b0fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232864d
389b0fc
 
 
 
 
 
 
 
 
232864d
389b0fc
 
 
 
ce167af
232864d
 
 
 
 
 
 
 
 
 
 
ce167af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---
language: en
license: apache-2.0
tags:
- audio
- automatic-speech-recognition
- en-atc
- en
- generated_from_trainer
datasets:
- Jzuluaga/uwb_atcc
metrics:
- wer
base_model: facebook/wav2vec2-large-960h-lv60-self
model-index:
- name: wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc
  results:
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      name: UWB-ATCC dataset (Air Traffic Control Communications)
      type: Jzuluaga/uwb_atcc
      config: test
      split: test
    metrics:
    - type: wer
      value: 17.2
      name: TEST WER
      verified: false
    - type: wer
      value: 13.72
      name: TEST WER (+LM)
      verified: false
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      name: ATCOSIM corpus (Air Traffic Control Communications)
      type: Jzuluaga/atcosim_corpus
      config: test
      split: test
    metrics:
    - type: wer
      value: 15.31
      name: TEST WER
      verified: false
    - type: wer
      value: 11.88
      name: TEST WER (+LM)
      verified: false
---

# wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc

This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the [UWB-ATCC corpus](https://huggingface.co/datasets/Jzuluaga/uwb_atcc). 

<a href="https://colab.research.google.com/github/idiap/w2v2-air-traffic/blob/main/src/eval_xlsr_atc_model.ipynb">
    <img alt="GitHub" src="https://colab.research.google.com/assets/colab-badge.svg\">
</a>
<a href="https://github.com/idiap/w2v2-air-traffic">
    <img alt="GitHub" src="https://img.shields.io/badge/GitHub-Open%20source-green\">
</a>

It achieves the following results on the evaluation set:
- Loss: 0.7287
- Wer: 0.1756

Paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822).

Authors: Juan Zuluaga-Gomez, Amrutha Prasad, Iuliia Nigmatulina, Saeed Sarfjoo, Petr Motlicek, Matthias Kleinert, Hartmut Helmke, Oliver Ohneiser, Qingran Zhan

Abstract: Recent work on self-supervised pre-training focus</b> on leveraging large-scale unlabeled speech data to build robust end-to-end (E2E)acoustic models (AM) that can be later fine-tuned on downstream tasks e.g., automatic speech recognition (ASR). Yet, few works investigated the impact on performance when the data properties substantially differ between the pre-training and fine-tuning phases, termed domain shift. We target this scenario by analyzing the robustness of Wav2Vec 2.0 and XLS-R models on downstream ASR for a completely unseen domain, air traffic control (ATC) communications. We benchmark these two models on several open-source and challenging ATC databases with signal-to-noise ratio between 5 and 20 dB. Relative word error rate (WER) reductions between 20% to 40% are obtained in comparison to hybrid-based ASR baselines by only fine-tuning E2E acoustic models with a smaller fraction of labeled data. We analyze WERs on the low-resource scenario and gender bias carried by one ATC dataset.

Code — GitHub repository: https://github.com/idiap/w2v2-air-traffic

## Usage

You can use our Google Colab notebook to run and evaluate our model: https://github.com/idiap/w2v2-air-traffic/blob/master/src/eval_xlsr_atc_model.ipynb

## Intended uses & limitations

This model was fine-tuned on air traffic control data. We don't expect that it keeps the same performance on some others datasets, e.g., LibriSpeech or CommonVoice.


## Training and evaluation data

See Table 1 (page 3) in our paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822). We described there the partitions of how to use our model. 

- We use the UWB-ATCC corpus to fine-tune this model. You can download the raw data here: https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0
- However, do not worry, we have prepared the database in `Datasets format`. Here, [UWB-ATCC corpus on HuggingFace](https://huggingface.co/datasets/Jzuluaga/uwb_atcc). You can scroll and check the train/test partitions, and even listen to some audios.
- If you want to prepare a database in HuggingFace format, you can follow the data loader script in: [data_loader_atc.py](https://huggingface.co/datasets/Jzuluaga/uwb_atcc/blob/main/atc_data_loader.py).
- 
## Writing your own inference script

If you use language model, you need to install the KenLM bindings with:

```bash
conda activate your_environment
pip install https://github.com/kpu/kenlm/archive/master.zip
```

The snippet of code:

```python
from datasets import load_dataset, load_metric, Audio
import torch
from transformers import AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
import torchaudio.functional as F

USE_LM = False
DATASET_ID = "Jzuluaga/uwb_atcc"
MODEL_ID = "Jzuluaga/wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc"

# 1. Load the dataset
# we only load the 'test' partition, however, if you want to load the 'train' partition, you can change it accordingly
uwb_atcc_corpus_test = load_dataset(DATASET_ID, "test", split="test")

# 2. Load the model
model = AutoModelForCTC.from_pretrained(MODEL_ID)

# 3. Load the processors, we offer support with LM, which should yield better resutls
if USE_LM:
    processor = Wav2Vec2ProcessorWithLM.from_pretrained(MODEL_ID)
else:
    processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
# 4. Format the test sample
sample = next(iter(uwb_atcc_corpus_test))
file_sampling_rate = sample['audio']['sampling_rate']
# resample if neccessary
if file_sampling_rate != 16000:
    resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), file_sampling_rate, 16000).numpy()
else:
    resampled_audio = torch.tensor(sample["audio"]["array"]).numpy()
input_values = processor(resampled_audio, return_tensors="pt").input_values

# 5. Run the forward pass in the model
with torch.no_grad():
    logits = model(input_values).logits
    
# get the transcription with processor
if USE_LM:
    transcription = processor.batch_decode(logits.numpy()).text
else:
    pred_ids = torch.argmax(logits, dim=-1)
    transcription = processor.batch_decode(pred_ids)
# print the output
print(transcription)
```

# Cite us

If you use this code for your research, please cite our paper with:

```
@article{zuluaga2022how,
    title={How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications},
    author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and others},
    journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
    year={2022}
  }
```
and, 

```
@article{zuluaga2022bertraffic,
  title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications},
  author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and others},
  journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
  year={2022}
  }
```

and, 

```
@article{zuluaga2022atco2,
  title={ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications},
  author={Zuluaga-Gomez, Juan and Vesel{\`y}, Karel and Sz{\"o}ke, Igor and Motlicek, Petr and others},
  journal={arXiv preprint arXiv:2211.04054},
  year={2022}
}
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| No log        | 1.06  | 500   | 2.9016          | 0.9995 |
| 2.877         | 2.12  | 1000  | 0.9812          | 0.3485 |
| 2.877         | 3.18  | 1500  | 0.7842          | 0.2732 |
| 0.7834        | 4.25  | 2000  | 0.6962          | 0.2192 |
| 0.7834        | 5.31  | 2500  | 0.6527          | 0.2042 |
| 0.6084        | 6.37  | 3000  | 0.6220          | 0.1972 |
| 0.6084        | 7.43  | 3500  | 0.6442          | 0.1934 |
| 0.5147        | 8.49  | 4000  | 0.6793          | 0.1950 |
| 0.5147        | 9.55  | 4500  | 0.6432          | 0.1920 |
| 0.4566        | 10.62 | 5000  | 0.6605          | 0.1853 |
| 0.4566        | 11.68 | 5500  | 0.6393          | 0.1866 |
| 0.4155        | 12.74 | 6000  | 0.6918          | 0.1803 |
| 0.4155        | 13.8  | 6500  | 0.6514          | 0.1791 |
| 0.372         | 14.86 | 7000  | 0.7010          | 0.1851 |
| 0.372         | 15.92 | 7500  | 0.6824          | 0.1786 |
| 0.3368        | 16.99 | 8000  | 0.6895          | 0.1780 |
| 0.3368        | 18.05 | 8500  | 0.7150          | 0.1759 |
| 0.3244        | 19.11 | 9000  | 0.7141          | 0.1759 |
| 0.3244        | 20.17 | 9500  | 0.7225          | 0.1756 |
| 0.2981        | 21.23 | 10000 | 0.7287          | 0.1756 |


### Framework versions

- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.2