|
---
|
|
base_model: jhgan/ko-sroberta-multitask
|
|
datasets: []
|
|
language: []
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- pearson_cosine
|
|
- spearman_cosine
|
|
- pearson_manhattan
|
|
- spearman_manhattan
|
|
- pearson_euclidean
|
|
- spearman_euclidean
|
|
- pearson_dot
|
|
- spearman_dot
|
|
- pearson_max
|
|
- spearman_max
|
|
pipeline_tag: sentence-similarity
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:574417
|
|
- loss:MultipleNegativesRankingLoss
|
|
- loss:CosineSimilarityLoss
|
|
widget:
|
|
- source_sentence: 파타키는 아브라함의 결정을 칭찬했고 리파 회장 리차드 케셀은 케이블이 영구적으로 가동되어야 한다고 말했다.
|
|
sentences:
|
|
- 이스라엘과 하마스 '일시적인 휴전을 받아들이다'
|
|
- 리파 회장 리차드 케셀은 "우리가 보기에 케이블이 사용될 수 있다"고 말했다.
|
|
- 하지만 그들은 그들의 유권자들에게 책임이 있다.
|
|
- source_sentence: 돛이 네 개 달린 배가 물 위를 항해하고 있다.
|
|
sentences:
|
|
- 돛단배가 물 위를 항해하고 있다.
|
|
- 보스턴 마라톤 결승선에서 발생한 두 번의 폭발 보고
|
|
- 레바논의 헤즈볼라 거점
|
|
- source_sentence: 딱딱한 모자를 쓴 남자가 건물 프레임 앞에 주차된 빨간 트럭의 침대를 쳐다본다.
|
|
sentences:
|
|
- 한 남자가 트럭을 보고 있다.
|
|
- 한 명은 빨간 스웨터를 입고 다른 한 명은 하얀 스웨터를 입은 두 소년은 덤불 근처의 시멘트 블록에 앉아 있었다.
|
|
- 남자가 자고 있다.
|
|
- source_sentence: 벽돌 건물 앞 발코니 뒤에 네 사람이 서 있다.
|
|
sentences:
|
|
- 그 사람은 경찰관이다.
|
|
- 그들은 거실에 앉는다
|
|
- 그 단체는 건물 밖에 있다
|
|
- source_sentence: 남자가 노래를 부르는 동안 두 남자가 악기를 연주한다.
|
|
sentences:
|
|
- 세 번째 남자가 악기를 연주하는 동안 두 남자가 노래를 부른다.
|
|
- 베이 근처.
|
|
- 3분의 1이 노래하는 동안 두 남자가 악기를 연주한다.
|
|
model-index:
|
|
- name: SentenceTransformer based on jhgan/ko-sroberta-multitask
|
|
results:
|
|
- task:
|
|
type: semantic-similarity
|
|
name: Semantic Similarity
|
|
dataset:
|
|
name: sts dev
|
|
type: sts-dev
|
|
metrics:
|
|
- type: pearson_cosine
|
|
value: 0.8668233431675435
|
|
name: Pearson Cosine
|
|
- type: spearman_cosine
|
|
value: 0.870259876274258
|
|
name: Spearman Cosine
|
|
- type: pearson_manhattan
|
|
value: 0.8619838546671155
|
|
name: Pearson Manhattan
|
|
- type: spearman_manhattan
|
|
value: 0.8684094795174834
|
|
name: Spearman Manhattan
|
|
- type: pearson_euclidean
|
|
value: 0.8623159159300648
|
|
name: Pearson Euclidean
|
|
- type: spearman_euclidean
|
|
value: 0.8686012195776042
|
|
name: Spearman Euclidean
|
|
- type: pearson_dot
|
|
value: 0.8474110764249254
|
|
name: Pearson Dot
|
|
- type: spearman_dot
|
|
value: 0.8469132619978514
|
|
name: Spearman Dot
|
|
- type: pearson_max
|
|
value: 0.8668233431675435
|
|
name: Pearson Max
|
|
- type: spearman_max
|
|
value: 0.870259876274258
|
|
name: Spearman Max
|
|
---
|
|
|
|
# SentenceTransformer based on jhgan/ko-sroberta-multitask
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask) <!-- at revision ab957ae6a91e99c4cad36d52063a2a9cf1bf4419 -->
|
|
- **Maximum Sequence Length:** 128 tokens
|
|
- **Output Dimensionality:** 768 tokens
|
|
- **Similarity Function:** Cosine Similarity
|
|
<!-- - **Training Dataset:** Unknown -->
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("sentence_transformers_model_id")
|
|
# Run inference
|
|
sentences = [
|
|
'남자가 노래를 부르는 동안 두 남자가 악기를 연주한다.',
|
|
'3분의 1이 노래하는 동안 두 남자가 악기를 연주한다.',
|
|
'세 번째 남자가 악기를 연주하는 동안 두 남자가 노래를 부른다.',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Semantic Similarity
|
|
* Dataset: `sts-dev`
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:-------------------|:-----------|
|
|
| pearson_cosine | 0.8668 |
|
|
| spearman_cosine | 0.8703 |
|
|
| pearson_manhattan | 0.862 |
|
|
| spearman_manhattan | 0.8684 |
|
|
| pearson_euclidean | 0.8623 |
|
|
| spearman_euclidean | 0.8686 |
|
|
| pearson_dot | 0.8474 |
|
|
| spearman_dot | 0.8469 |
|
|
| pearson_max | 0.8668 |
|
|
| **spearman_max** | **0.8703** |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Datasets
|
|
|
|
#### Unnamed Dataset
|
|
|
|
|
|
* Size: 568,640 training samples
|
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | sentence_0 | sentence_1 | sentence_2 |
|
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
|
| type | string | string | string |
|
|
| details | <ul><li>min: 4 tokens</li><li>mean: 19.21 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 18.31 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.57 tokens</li><li>max: 54 tokens</li></ul> |
|
|
* Samples:
|
|
| sentence_0 | sentence_1 | sentence_2 |
|
|
|:----------------------------------------|:-------------------------------------------------|:--------------------------------------|
|
|
| <code>발생 부하가 함께 5% 적습니다.</code> | <code>발생 부하의 5% 감소와 함께 11.</code> | <code>발생 부하가 5% 증가합니다.</code> |
|
|
| <code>어떤 행사를 위해 음식과 옷을 배급하는 여성들.</code> | <code>여성들은 음식과 옷을 나눠줌으로써 난민들을 돕고 있다.</code> | <code>여자들이 사막에서 오토바이를 운전하고 있다.</code> |
|
|
| <code>어린 아이들은 그 지식을 얻을 필요가 있다.</code> | <code>응, 우리 젊은이들 중 많은 사람들이 그걸 배워야 할 것 같아.</code> | <code>젊은 사람들은 배울 필요가 없다.</code> |
|
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
|
```json
|
|
{
|
|
"scale": 20.0,
|
|
"similarity_fct": "cos_sim"
|
|
}
|
|
```
|
|
|
|
#### Unnamed Dataset
|
|
|
|
|
|
* Size: 5,777 training samples
|
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | sentence_0 | sentence_1 | label |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
|
| type | string | string | float |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 17.16 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 17.11 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
|
|
* Samples:
|
|
| sentence_0 | sentence_1 | label |
|
|
|:-------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------|
|
|
| <code>시는 드램 시장이 2003년에 2.9% 성장하여 157억 달러, 2004년에는 43% 성장하여 225억 달러가 될 것으로 예상하고 있다고 말했습니다.</code> | <code>미국 시장은 2003년에 2.1퍼센트가 감소한 30.6억 달러로, 그리고 나서 2004년에 15.7퍼센트가 증가하여 354억 달러로 성장할 것이다.</code> | <code>0.24</code> |
|
|
| <code>오사마 빈 라덴 부인들 수감</code> | <code>인도에서 촬영될 오사마 빈 라덴 영화</code> | <code>0.16</code> |
|
|
| <code>파키스탄 전투기, '탈리반 은신처' 폭탄 터뜨리기</code> | <code>파키스탄은 시리아 측에 무기 공급을 중단하기를 원한다.</code> | <code>0.32</code> |
|
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
|
```json
|
|
{
|
|
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
|
}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `num_train_epochs`: 5
|
|
- `batch_sampler`: no_duplicates
|
|
- `multi_dataset_batch_sampler`: round_robin
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 8
|
|
- `per_device_eval_batch_size`: 8
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `learning_rate`: 5e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1
|
|
- `num_train_epochs`: 5
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.0
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: False
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: False
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `batch_sampler`: no_duplicates
|
|
- `multi_dataset_batch_sampler`: round_robin
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | sts-dev_spearman_max |
|
|
|:------:|:----:|:-------------:|:--------------------:|
|
|
| 0.3458 | 500 | 0.1504 | - |
|
|
| 0.6916 | 1000 | 0.1662 | 0.8660 |
|
|
| 1.0007 | 1447 | - | 0.8678 |
|
|
| 1.0367 | 1500 | 0.1575 | - |
|
|
| 1.3824 | 2000 | 0.0539 | 0.8590 |
|
|
| 1.7282 | 2500 | 0.0406 | - |
|
|
| 2.0007 | 2894 | - | 0.8703 |
|
|
|
|
|
|
### Framework Versions
|
|
- Python: 3.11.9
|
|
- Sentence Transformers: 3.0.1
|
|
- Transformers: 4.41.2
|
|
- PyTorch: 2.2.2+cu121
|
|
- Accelerate: 0.31.0
|
|
- Datasets: 2.20.0
|
|
- Tokenizers: 0.19.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### MultipleNegativesRankingLoss
|
|
```bibtex
|
|
@misc{henderson2017efficient,
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
|
year={2017},
|
|
eprint={1705.00652},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CL}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |