Bio-Mistralv2-Squared-SLERP

Bio-Mistralv2-Squared is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the SLERP merge method.

πŸ€–πŸ’¬ Models Merged

The following models were included in the merge:

🧩 Configuration

The following YAML configuration was used to produce this model:


slices:
  - sources:
      - model: BioMistral/BioMistral-7B
        layer_range: [0, 32]
      - model: mistralai/Mistral-7B-Instruct-v0.2
        layer_range: [0, 32]
merge_method: slerp
base_model: BioMistral/BioMistral-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kabster/Bio-Mistralv2-Squared"
messages = [{"role": "user", "content": "What is fluimucil used for?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.2, top_k=100, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
2,763
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kabster/Bio-Mistralv2-Squared