TinyBERT based model

Fetching the model

import torch
from torch.utils.data import DataLoader, Dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AdamW
from sklearn.model_selection import train_test_split
import pandas as pd
from tqdm import tqdm

# Load the TinyBERT tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D')
model = AutoModelForSequenceClassification.from_pretrained('huawei-noah/TinyBERT_General_4L_312D', num_labels=2)

# fetch the statedict to apply the fine-tuned weights
state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/tiny_bert_model.bin")
# if running on cpu
# state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/tiny_bert_model.bin", map_location=torch.device('cpu'))

model.load_state_dict(state_dict)

model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))

Using the model

def predict_description(model, tokenizer, text, max_length=512):
    model.eval()  # Set the model to evaluation mode
    
    # Ensure model is on the correct device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)

    # Encode the input text
    inputs = tokenizer.encode_plus(
        text,
        None,
        add_special_tokens=True,
        max_length=max_length,
        padding='max_length',
        return_token_type_ids=False,
        return_tensors='pt',
        truncation=True
    )

    # Move tensors to the correct device
    inputs = {key: value.to(device) for key, value in inputs.items()}

    # Make prediction
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probabilities = torch.softmax(logits, dim=-1)
        predicted_class_id = torch.argmax(probabilities, dim=-1).item()

    return predicted_class_id, probabilities.cpu().tolist()



#Example usage

tickets = [
  """Inquiry about the possibility of customizing Docker to better meet department-specific needs. 
Gathered requirements for desired customizations.""",
  """We've encountered a recurring problem with DEVEnv shutting down anytime we try to save documents.
I looked over the error logs for any clues about what's going wrong. I'm passing this on to the team responsible for software upkeep."""
]

for row in tickets:
    prediction, probabilities = predict_description(model, tokenizer, row)
    prediction = (['INCIDENT', 'TASK'])[prediction]
    print(f"{prediction} ({probabilities}) <== {row['content']}")

Additional fine-tuning


# The dataset class 
class TextDataset(Dataset):
    def __init__(self, descriptions, labels, tokenizer, max_len):
        self.descriptions = descriptions
        self.labels = labels
        self.tokenizer = tokenizer
        self.max_len = max_len

    def __len__(self):
        return len(self.descriptions)

    def __getitem__(self, idx):
        text = self.descriptions[idx]
        inputs = self.tokenizer.encode_plus(
            text,
            None,
            add_special_tokens=True,
            max_length=self.max_len,
            padding='max_length',
            return_token_type_ids=False,
            truncation=True
        )
        return {
            'input_ids': torch.tensor(inputs['input_ids'], dtype=torch.long),
            'attention_mask': torch.tensor(inputs['attention_mask'], dtype=torch.long),
            'labels': torch.tensor(self.labels[idx], dtype=torch.long)
        }

# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# load the data 
df = pd.read_csv('..\\data\\final_data.csv')
df['label'] = df['type'].astype('category').cat.codes  # Convert labels to category codes if they aren't already

# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# create the training and validation sets and data loaders
print( "cuda is available" if torch.cuda.is_available() else "cuda is unavailable: running on cpu")

# Split the data into training and validation sets
train_df, val_df = train_test_split(df, test_size=0.15)

# Create PyTorch datasets
train_dataset = TextDataset(train_df['content'].tolist(), train_df['label'].tolist(), tokenizer, max_len=512)
val_dataset = TextDataset(val_df['content'].tolist(), val_df['label'].tolist(), tokenizer, max_len=512)

# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32)

# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# Train the model

# only these layers will be trained, customize this to your liking to freeze the ones you dont want to retrain
training_layers = [
    "bert.encoder.layer.3.output.dense.weight",
    "bert.encoder.layer.3.output.dense.bias",
    "bert.encoder.layer.3.output.LayerNorm.weight",
    "bert.encoder.layer.3.output.LayerNorm.bias",
    "bert.pooler.dense.weight",
    "bert.pooler.dense.bias",
    "classifier.weight",
    "classifier.bias",
]

for name, param in model.named_parameters():
    if name not in training_layers:  # Freeze layers that are not part of the classifier
        param.requires_grad = False
        
# Training setup
optimizer = AdamW(model.parameters(), lr=5e-5)
epochs = 2

for epoch in range(epochs):
    model.train()
    loss_item = float('+inf')
    for batch in tqdm(train_loader, desc=f"Training Loss: {loss_item}"):
        batch = {k: v.to(model.device) for k, v in batch.items()}
        outputs = model(**batch)
        loss = outputs.loss
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
        loss_item = loss.item()

    model.eval()
    total_eval_accuracy = 0
    for batch in tqdm(val_loader, desc=f"Validation Accuracy: {total_eval_accuracy}"):
        batch = {k: v.to(model.device) for k, v in batch.items()}
        with torch.no_grad():
            outputs = model(**batch)
        logits = outputs.logits
        predictions = torch.argmax(logits, dim=-1)
        accuracy = (predictions == batch['labels']).cpu().numpy().mean()
        total_eval_accuracy += accuracy

    print(f"Validation Accuracy: {total_eval_accuracy / len(val_loader)}")
DistilBERT based model

Fetching the model

import torch
from torch.utils.data import DataLoader, Dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AdamW
from sklearn.model_selection import train_test_split
import pandas as pd
from tqdm import tqdm

# Load the TinyBERT tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('distilbert/distilbert-base-uncased')
model = AutoModelForSequenceClassification.from_pretrained('distilbert/distilbert-base-uncased', num_labels=2)

# fetch the statedict to apply the fine-tuned weights
state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/distilbert_1.bin")
# if running on cpu
# state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/distilbert_1.bin", map_location=torch.device('cpu'))

model.load_state_dict(state_dict)

model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))

Using the model

def predict_description(model, tokenizer, text, max_length=512):
    model.eval()  # Set the model to evaluation mode
    
    # Ensure model is on the correct device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)

    # Encode the input text
    inputs = tokenizer.encode_plus(
        text,
        None,
        add_special_tokens=True,
        max_length=max_length,
        padding='max_length',
        return_token_type_ids=False,
        return_tensors='pt',
        truncation=True
    )

    # Move tensors to the correct device
    inputs = {key: value.to(device) for key, value in inputs.items()}

    # Make prediction
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probabilities = torch.softmax(logits, dim=-1)
        predicted_class_id = torch.argmax(probabilities, dim=-1).item()

    return predicted_class_id, probabilities.cpu().tolist()



#Example usage

tickets = [
  """Inquiry about the possibility of customizing Docker to better meet department-specific needs. 
Gathered requirements for desired customizations.""",
  """We've encountered a recurring problem with DEVEnv shutting down anytime we try to save documents.
I looked over the error logs for any clues about what's going wrong. I'm passing this on to the team responsible for software upkeep."""
]

for row in tickets:
    prediction, probabilities = predict_description(model, tokenizer, row)
    prediction = (['INCIDENT', 'TASK'])[prediction]
    print(f"{prediction} ({probabilities}) <== {row['content']}")

Additional fine-tuning


# The dataset class 
class TextDataset(Dataset):
    def __init__(self, descriptions, labels, tokenizer, max_len):
        self.descriptions = descriptions
        self.labels = labels
        self.tokenizer = tokenizer
        self.max_len = max_len

    def __len__(self):
        return len(self.descriptions)

    def __getitem__(self, idx):
        text = self.descriptions[idx]
        inputs = self.tokenizer.encode_plus(
            text,
            None,
            add_special_tokens=True,
            max_length=self.max_len,
            padding='max_length',
            return_token_type_ids=False,
            truncation=True
        )
        return {
            'input_ids': torch.tensor(inputs['input_ids'], dtype=torch.long),
            'attention_mask': torch.tensor(inputs['attention_mask'], dtype=torch.long),
            'labels': torch.tensor(self.labels[idx], dtype=torch.long)
        }

# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# load the data 
df = pd.read_csv('..\\data\\final_data.csv')
df['label'] = df['type'].astype('category').cat.codes  # Convert labels to category codes if they aren't already

# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# create the training and validation sets and data loaders
print( "cuda is available" if torch.cuda.is_available() else "cuda is unavailable: running on cpu")

# Split the data into training and validation sets
train_df, val_df = train_test_split(df, test_size=0.15)

# Create PyTorch datasets
train_dataset = TextDataset(train_df['content'].tolist(), train_df['label'].tolist(), tokenizer, max_len=512)
val_dataset = TextDataset(val_df['content'].tolist(), val_df['label'].tolist(), tokenizer, max_len=512)

# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32)

# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
# Train the model

# only these layers will be trained, customize this to your liking to freeze the ones you dont want to retrain
training_layers = [
    "distilbert.transformer.layer.5.ffn.lin2.weight",
    "distilbert.transformer.layer.5.ffn.lin2.bias",
    "distilbert.transformer.layer.5.output_layer_norm.weight",
    "distilbert.transformer.layer.5.output_layer_norm.bias",
    "pre_classifier.weight",
    "pre_classifier.bias",
    "classifier.weight",
    "classifier.bias"
]

for name, param in model.named_parameters():
    if name not in training_layers:  # Freeze layers that are not part of the classifier
        param.requires_grad = False

# if the model is not already on gpu, make sure to train it on gpu if available
# model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
        
# Training setup
optimizer = AdamW(model.parameters(), lr=5e-5)
epochs = 2

for epoch in range(epochs):
    model.train()
    loss_item = float('+inf')
    for batch in tqdm(train_loader, desc=f"Training Loss: {loss_item}"):
        batch = {k: v.to(model.device) for k, v in batch.items()}
        outputs = model(**batch)
        loss = outputs.loss
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()
        loss_item = loss.item()

    model.eval()
    total_eval_accuracy = 0
    for batch in tqdm(val_loader, desc=f"Validation Accuracy: {total_eval_accuracy}"):
        batch = {k: v.to(model.device) for k, v in batch.items()}
        with torch.no_grad():
            outputs = model(**batch)
        logits = outputs.logits
        predictions = torch.argmax(logits, dim=-1)
        accuracy = (predictions == batch['labels']).cpu().numpy().mean()
        total_eval_accuracy += accuracy

    print(f"Validation Accuracy: {total_eval_accuracy / len(val_loader)}")
RoBERT based model

Base model

import torch
from torch.utils.data import DataLoader, Dataset
from transformers import RobertaTokenizer, RobertaForSequenceClassification, AdamW
from sklearn.model_selection import train_test_split
import pandas as pd

# Load the tokenizer
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')

# Load RoBERTa pre-trained model
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)


# fetch the statedict to apply the fine-tuned weights
state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/pytorch_model.bin")
# if running on cpu
# state_dict = torch.hub.load_state_dict_from_url(f"https://huggingface.co/KameronB/SITCC-Incident-Request-Classifier/resolve/main/pytorch_model.bin", map_location=torch.device('cpu'))

model.load_state_dict(state_dict)

model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))

Use model to make predictions


def predict_description(model, tokenizer, text, max_length=512):
    model.eval()  # Set the model to evaluation mode
    
    # Ensure model is on the correct device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)

    # Encode the input text
    inputs = tokenizer.encode_plus(
        text,
        None,
        add_special_tokens=True,
        max_length=max_length,
        padding='max_length',
        return_token_type_ids=False,
        return_tensors='pt',
        truncation=True
    )

    # Move tensors to the correct device
    inputs = {key: value.to(device) for key, value in inputs.items()}

    # Make prediction
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probabilities = torch.softmax(logits, dim=-1)
        predicted_class_id = torch.argmax(probabilities, dim=-1).item()

    return predicted_class_id


(['INCIDENT', 'REQUEST'])[predict_description(model, tokenizer, """My ID card is not being detected.""")]
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .