deberta-base-japanese-wikipedia-ud-head

Model Description

This is a DeBERTa(V2) model pretrained on Japanese Wikipedia and 青空文庫 texts for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from deberta-base-japanese-wikipedia and UD_Japanese-GSDLUW. Use [MASK] inside context to avoid ambiguity when specifying a multiple-used word as question.

How to Use

from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-japanese-wikipedia-ud-head")
model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-base-japanese-wikipedia-ud-head")
qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model,align_to_words=False)
print(qap(question="国語",context="全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))

or (with ufal.chu-liu-edmonds)

class TransformersUD(object):
  def __init__(self,bert):
    import os
    from transformers import (AutoTokenizer,AutoModelForQuestionAnswering,
      AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline)
    self.tokenizer=AutoTokenizer.from_pretrained(bert)
    self.model=AutoModelForQuestionAnswering.from_pretrained(bert)
    x=AutoModelForTokenClassification.from_pretrained
    if os.path.isdir(bert):
      d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger"))
    else:
      from transformers.utils import cached_file
      c=AutoConfig.from_pretrained(cached_file(bert,"deprel/config.json"))
      d=x(cached_file(bert,"deprel/pytorch_model.bin"),config=c)
      s=AutoConfig.from_pretrained(cached_file(bert,"tagger/config.json"))
      t=x(cached_file(bert,"tagger/pytorch_model.bin"),config=s)
    self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer,
      aggregation_strategy="simple")
    self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer)
  def __call__(self,text):
    import numpy,torch,ufal.chu_liu_edmonds
    w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)]
    z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w)
    r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan)
    v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[]
    for i,t in enumerate(v):
      q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id]
      c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]])
    b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c]
    with torch.no_grad():
      d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]),
        token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b]))
    s,e=d.start_logits.tolist(),d.end_logits.tolist()
    for i in range(n):
      for j in range(n):
        m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1]
    h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
    if [0 for i in h if i==0]!=[0]:
      i=([p for s,e,p in w]+["root"]).index("root")
      j=i+1 if i<n else numpy.nanargmax(m[:,0])
      m[0:j,0]=m[j+1:,0]=numpy.nan
      h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
    u="# text = "+text.replace("\n"," ")+"\n"
    for i,(s,e,p) in enumerate(w,1):
      p="root" if h[i]==0 else "dep" if p=="root" else p
      u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]),
        str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n"
    return u+"\n"

nlp=TransformersUD("KoichiYasuoka/deberta-base-japanese-wikipedia-ud-head")
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))

Reference

安岡孝一: 青空文庫DeBERTaモデルによる国語研長単位係り受け解析, 東洋学へのコンピュータ利用, 第35回研究セミナー (2022年7月), pp.29-43.

Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for KoichiYasuoka/deberta-base-japanese-wikipedia-ud-head

Finetuned
(2)
this model

Dataset used to train KoichiYasuoka/deberta-base-japanese-wikipedia-ud-head