gpt2-large-japanese-upos

Model Description

This is a GPT-2 model for POS-tagging and dependency-parsing, derived from gpt2-large-japanese-char. Every short-unit-word is tagged by UPOS (Universal Part-Of-Speech) and FEATS.

How to Use

from transformers import pipeline
nlp=pipeline("upos","KoichiYasuoka/gpt2-large-japanese-upos",trust_remote_code=True,aggregation_strategy="simple")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))

or

import esupar
nlp=esupar.load("KoichiYasuoka/gpt2-large-japanese-upos")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))

Reference

安岡孝一: GPT系モデルの系列ラベリングによる品詞付与, 東洋学へのコンピュータ利用, 第38回研究セミナー (2024年7月26日), pp.3-10.

See Also

esupar: Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa/GPT models

Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for KoichiYasuoka/gpt2-large-japanese-upos

Finetuned
(1)
this model
Finetunes
1 model

Dataset used to train KoichiYasuoka/gpt2-large-japanese-upos