|
--- |
|
base_model: |
|
- Qwen/Qwen2.5-1.5B-Instruct |
|
- Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO |
|
datasets: |
|
- multilingual/orca_dpo_pairs |
|
- Kukedlc/Big-Spanish-1.2M |
|
language: |
|
- es |
|
license: apache-2.0 |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- Qwen/Qwen2.5-1.5B-Instruct |
|
- Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO |
|
- autoquant |
|
- gguf |
|
--- |
|
|
|
# NeuralQwen-2.5-1.5B-Spanish |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/bQMhMwK-xDvHMIbDFpxN5.png) |
|
|
|
|
|
NeuralQwen-2.5-1.5B-Spanish is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) |
|
* [Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO](https://huggingface.co/Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
models: |
|
- model: Qwen/Qwen2.5-1.5B |
|
# No parameters necessary for base model |
|
- model: Qwen/Qwen2.5-1.5B-Instruct |
|
parameters: |
|
density: 0.66 |
|
weight: 0.6 |
|
- model: Kukedlc/Qwen2.5-1.5B-Spanish-1.0-DPO |
|
parameters: |
|
density: 0.44 |
|
weight: 0.4 |
|
merge_method: dare_ties |
|
base_model: Qwen/Qwen2.5-1.5B |
|
parameters: |
|
int8_mask: true |
|
dtype: float16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Kukedlc/NeuralQwen-2.5-1.5B-Spanish" |
|
messages = [{"role": "system", "content": "Eres un asistente de pensamiento logico que piensa paso a paso, por cada pregunta que te hagan deberes comprobar la respuesta por 3 metodos diferentes."}, |
|
{"role": "user", "content": "Cuantas letras 'r' tiene la palabra strawberry?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/Tu9FV0dQJXz-mlriKNqdE.png) |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/sg8c5HlcbJ89q5MknX-Gf.png) |
|
|
|
|