marco_model

This model is a fine-tuned version of facebook/detr-resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3925
  • Map: 0.7574
  • Map 50: 0.929
  • Map 75: 0.884
  • Map Small: -1.0
  • Map Medium: 0.6668
  • Map Large: 0.7845
  • Mar 1: 0.1077
  • Mar 10: 0.7532
  • Mar 100: 0.8489
  • Mar Small: -1.0
  • Mar Medium: 0.8074
  • Mar Large: 0.8615
  • Map Per Class: -1.0
  • Mar 100 Per Class: -1.0
  • Classes: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Per Class Mar 100 Per Class Classes
1.8485 1.0 9 2.0519 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
1.4965 2.0 18 1.4544 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
1.3577 3.0 27 1.3521 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0 0
1.2729 4.0 36 1.2400 0.0077 0.0281 0.004 -1.0 0.0158 0.0058 0.0039 0.009 0.009 -1.0 0.0148 0.0073 -1.0 -1.0 0
1.1613 5.0 45 1.2042 0.0066 0.0099 0.0099 -1.0 0.0079 0.0059 0.006 0.006 0.006 -1.0 0.0148 0.0034 -1.0 -1.0 0
1.1631 6.0 54 1.1257 0.0235 0.0297 0.0229 -1.0 0.0139 0.0274 0.0219 0.0219 0.0219 -1.0 0.0167 0.0235 -1.0 -1.0 0
1.1196 7.0 63 1.1354 0.0231 0.0297 0.0297 -1.0 0.031 0.0234 0.0172 0.021 0.021 -1.0 0.0315 0.0179 -1.0 -1.0 0
1.123 8.0 72 1.0910 0.023 0.0297 0.0297 -1.0 0.0314 0.0168 0.0142 0.0176 0.0176 -1.0 0.0315 0.0134 -1.0 -1.0 0
1.0342 9.0 81 1.0235 0.0576 0.0748 0.0748 -1.0 0.0601 0.0618 0.0421 0.0622 0.0622 -1.0 0.0593 0.0631 -1.0 -1.0 0
1.0549 10.0 90 1.1559 0.0366 0.0495 0.0495 -1.0 0.0609 0.0297 0.0155 0.0352 0.0352 -1.0 0.0593 0.0279 -1.0 -1.0 0
0.9125 11.0 99 0.9385 0.1832 0.2508 0.2184 -1.0 0.2598 0.1648 0.0691 0.2189 0.2253 -1.0 0.3111 0.1994 -1.0 -1.0 0
0.8747 12.0 108 0.9022 0.3659 0.5151 0.4412 -1.0 0.3361 0.394 0.0824 0.4519 0.5056 -1.0 0.5481 0.4927 -1.0 -1.0 0
0.7734 13.0 117 0.7992 0.3737 0.5225 0.4491 -1.0 0.3209 0.3989 0.0828 0.4468 0.4605 -1.0 0.4444 0.4654 -1.0 -1.0 0
0.9409 14.0 126 0.7235 0.474 0.6527 0.5714 -1.0 0.3893 0.5149 0.0974 0.5451 0.5798 -1.0 0.5259 0.5961 -1.0 -1.0 0
0.6904 15.0 135 0.6478 0.5892 0.7933 0.7054 -1.0 0.4855 0.6278 0.0948 0.6292 0.7236 -1.0 0.6778 0.7374 -1.0 -1.0 0
0.6725 16.0 144 0.5890 0.6553 0.8521 0.7901 -1.0 0.5227 0.7068 0.0953 0.6734 0.7725 -1.0 0.687 0.7983 -1.0 -1.0 0
0.6808 17.0 153 0.5885 0.6474 0.8739 0.7781 -1.0 0.5653 0.6778 0.0948 0.6476 0.7867 -1.0 0.7537 0.7966 -1.0 -1.0 0
0.4056 18.0 162 0.5272 0.6694 0.8891 0.8089 -1.0 0.5952 0.697 0.0944 0.679 0.8013 -1.0 0.7741 0.8095 -1.0 -1.0 0
0.5985 19.0 171 0.5146 0.655 0.8835 0.7829 -1.0 0.5655 0.6914 0.0966 0.6738 0.7914 -1.0 0.7537 0.8028 -1.0 -1.0 0
0.395 20.0 180 0.5012 0.6867 0.8954 0.8308 -1.0 0.5623 0.7287 0.0987 0.6742 0.806 -1.0 0.7537 0.8218 -1.0 -1.0 0
0.5581 21.0 189 0.4747 0.7079 0.9051 0.8362 -1.0 0.5806 0.7501 0.094 0.7 0.8227 -1.0 0.7926 0.8318 -1.0 -1.0 0
0.3999 22.0 198 0.4860 0.7029 0.9115 0.8551 -1.0 0.6319 0.7286 0.1004 0.6948 0.812 -1.0 0.7815 0.8212 -1.0 -1.0 0
0.4602 23.0 207 0.4910 0.6976 0.8884 0.8222 -1.0 0.6346 0.7229 0.1017 0.6983 0.8009 -1.0 0.7889 0.8045 -1.0 -1.0 0
0.4216 24.0 216 0.4817 0.7081 0.902 0.8552 -1.0 0.5966 0.7483 0.1 0.709 0.8176 -1.0 0.7796 0.8291 -1.0 -1.0 0
0.4984 25.0 225 0.4645 0.7113 0.9192 0.8414 -1.0 0.6434 0.7322 0.1056 0.7155 0.8004 -1.0 0.7519 0.8151 -1.0 -1.0 0
0.6411 26.0 234 0.4574 0.712 0.9219 0.8573 -1.0 0.6225 0.7431 0.1013 0.706 0.8189 -1.0 0.7944 0.8263 -1.0 -1.0 0
0.4605 27.0 243 0.4536 0.7152 0.9188 0.8555 -1.0 0.6354 0.7416 0.103 0.7099 0.8219 -1.0 0.8019 0.8279 -1.0 -1.0 0
0.4985 28.0 252 0.4349 0.7105 0.9045 0.8509 -1.0 0.6036 0.7465 0.1017 0.721 0.8159 -1.0 0.7407 0.8385 -1.0 -1.0 0
0.3637 29.0 261 0.4239 0.7218 0.9085 0.8706 -1.0 0.5929 0.7671 0.1043 0.7343 0.8176 -1.0 0.7185 0.8475 -1.0 -1.0 0
0.3068 30.0 270 0.4442 0.7149 0.9153 0.8518 -1.0 0.6273 0.7437 0.1034 0.7202 0.8227 -1.0 0.7926 0.8318 -1.0 -1.0 0
0.3456 31.0 279 0.4668 0.7161 0.9101 0.8587 -1.0 0.6638 0.7374 0.1039 0.7189 0.8129 -1.0 0.7722 0.8251 -1.0 -1.0 0
0.437 32.0 288 0.4049 0.7589 0.9395 0.8984 -1.0 0.6825 0.7851 0.1034 0.7391 0.8455 -1.0 0.8037 0.8581 -1.0 -1.0 0
0.3444 33.0 297 0.4229 0.747 0.9414 0.8875 -1.0 0.6868 0.7668 0.1043 0.7266 0.8288 -1.0 0.7889 0.8408 -1.0 -1.0 0
0.3523 34.0 306 0.4203 0.7474 0.9398 0.8744 -1.0 0.6821 0.7687 0.1077 0.7343 0.8305 -1.0 0.7963 0.8408 -1.0 -1.0 0
0.2629 35.0 315 0.4216 0.7449 0.928 0.8813 -1.0 0.6819 0.7653 0.1094 0.7361 0.8313 -1.0 0.7778 0.8475 -1.0 -1.0 0
0.3533 36.0 324 0.4698 0.7009 0.8817 0.8321 -1.0 0.638 0.7228 0.0974 0.709 0.8185 -1.0 0.7926 0.8263 -1.0 -1.0 0
0.2833 37.0 333 0.4804 0.7025 0.8904 0.8546 -1.0 0.6607 0.718 0.0996 0.6983 0.8137 -1.0 0.7944 0.8196 -1.0 -1.0 0
0.3656 38.0 342 0.4546 0.7221 0.9065 0.8543 -1.0 0.6382 0.7488 0.1039 0.727 0.8193 -1.0 0.7593 0.8374 -1.0 -1.0 0
0.4347 39.0 351 0.4096 0.7362 0.905 0.8617 -1.0 0.6388 0.7679 0.112 0.7365 0.8343 -1.0 0.7667 0.8547 -1.0 -1.0 0
0.3386 40.0 360 0.4118 0.7517 0.9218 0.8883 -1.0 0.6665 0.777 0.1021 0.7416 0.8468 -1.0 0.8019 0.8603 -1.0 -1.0 0
0.2718 41.0 369 0.4035 0.7532 0.9305 0.8954 -1.0 0.6756 0.7727 0.109 0.7425 0.8429 -1.0 0.8093 0.8531 -1.0 -1.0 0
0.2767 42.0 378 0.4029 0.7598 0.9324 0.8973 -1.0 0.6522 0.7911 0.1112 0.7442 0.8446 -1.0 0.7796 0.8642 -1.0 -1.0 0
0.3407 43.0 387 0.4037 0.7574 0.9348 0.8848 -1.0 0.6612 0.7855 0.1086 0.7416 0.8433 -1.0 0.7852 0.8609 -1.0 -1.0 0
0.2914 44.0 396 0.3938 0.7646 0.9385 0.9041 -1.0 0.6736 0.7913 0.109 0.7455 0.8442 -1.0 0.787 0.8615 -1.0 -1.0 0
0.2816 45.0 405 0.3961 0.7667 0.9377 0.8954 -1.0 0.671 0.794 0.1064 0.7519 0.8476 -1.0 0.7963 0.8631 -1.0 -1.0 0
0.2724 46.0 414 0.4053 0.754 0.9263 0.8842 -1.0 0.6651 0.7787 0.106 0.7472 0.8378 -1.0 0.7778 0.8559 -1.0 -1.0 0
0.2173 47.0 423 0.4031 0.7515 0.9222 0.879 -1.0 0.653 0.7808 0.106 0.7442 0.8395 -1.0 0.7815 0.857 -1.0 -1.0 0
0.3299 48.0 432 0.4073 0.7563 0.9291 0.8775 -1.0 0.662 0.7839 0.1069 0.7498 0.8442 -1.0 0.7963 0.8587 -1.0 -1.0 0
0.326 49.0 441 0.3962 0.7601 0.929 0.8834 -1.0 0.6728 0.7868 0.1073 0.7515 0.8515 -1.0 0.8093 0.8642 -1.0 -1.0 0
0.267 50.0 450 0.3949 0.7592 0.9284 0.8917 -1.0 0.6737 0.7834 0.1064 0.7506 0.8506 -1.0 0.8111 0.8626 -1.0 -1.0 0
0.3073 51.0 459 0.3979 0.754 0.9278 0.8833 -1.0 0.6652 0.7805 0.1064 0.7451 0.8451 -1.0 0.8056 0.857 -1.0 -1.0 0
0.3166 52.0 468 0.3995 0.7545 0.9279 0.8822 -1.0 0.6645 0.78 0.106 0.7446 0.8446 -1.0 0.8074 0.8559 -1.0 -1.0 0
0.2635 53.0 477 0.3957 0.7554 0.9279 0.8826 -1.0 0.6605 0.7836 0.1073 0.7468 0.8464 -1.0 0.8037 0.8592 -1.0 -1.0 0
0.2663 54.0 486 0.3942 0.7556 0.9273 0.8819 -1.0 0.6625 0.7831 0.1073 0.7524 0.8476 -1.0 0.8037 0.8609 -1.0 -1.0 0
0.3247 55.0 495 0.3940 0.7574 0.9272 0.8819 -1.0 0.6688 0.7832 0.1073 0.7536 0.8494 -1.0 0.8093 0.8615 -1.0 -1.0 0
0.2399 56.0 504 0.3933 0.7575 0.9275 0.8825 -1.0 0.6671 0.7836 0.1073 0.7532 0.8494 -1.0 0.8093 0.8615 -1.0 -1.0 0
0.3087 57.0 513 0.3929 0.7591 0.929 0.8839 -1.0 0.6682 0.7855 0.1077 0.7536 0.8498 -1.0 0.8093 0.862 -1.0 -1.0 0
0.2753 58.0 522 0.3926 0.7575 0.929 0.884 -1.0 0.6667 0.7843 0.1077 0.7532 0.8489 -1.0 0.8074 0.8615 -1.0 -1.0 0
0.2291 59.0 531 0.3925 0.7574 0.929 0.8839 -1.0 0.6667 0.7845 0.1077 0.7532 0.8489 -1.0 0.8074 0.8615 -1.0 -1.0 0
0.2809 60.0 540 0.3925 0.7574 0.929 0.884 -1.0 0.6668 0.7845 0.1077 0.7532 0.8489 -1.0 0.8074 0.8615 -1.0 -1.0 0

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
41.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for LLyq/marco_model

Finetuned
(466)
this model