|
--- |
|
language: |
|
- hi |
|
license: apache-2.0 |
|
tags: |
|
- Openslr Multilingual |
|
- automatic-speech-recognition |
|
- generated_from_trainer |
|
- hf-asr-leaderboard |
|
- mozilla-foundation/common_voice_7_0 |
|
- robust-speech-event |
|
datasets: |
|
- mozilla-foundation/common_voice_7_0 |
|
model-index: |
|
- name: Wav2Vec2_xls_r_300m_hi_final |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 7.0 |
|
type: mozilla-foundation/common_voice_7_0 |
|
args: hi |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 34.21 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Wav2Vec2_xls_r_300m_hi_final |
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the ['Openslr Multilingual and code-switching ASR challenge'](http://www.openslr.org/103/) dataset and ['mozilla-foundation/common_voice_7_0'](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3035 |
|
- Wer: 0.3137 |
|
- Cer: 0.0972 |
|
## Model description |
|
More information needed |
|
## Intended uses & limitations |
|
More information needed |
|
## Training and evaluation data |
|
More information needed |
|
## Training procedure |
|
### Training hyperparameters |
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
### Training results |
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 0.9821 | 0.64 | 400 | 0.5059 | 0.4783 | 0.1573 | |
|
| 0.6861 | 1.28 | 800 | 0.4201 | 0.4247 | 0.1356 | |
|
| 0.585 | 1.92 | 1200 | 0.3797 | 0.3811 | 0.1210 | |
|
| 0.5193 | 2.56 | 1600 | 0.3577 | 0.3652 | 0.1152 | |
|
| 0.4583 | 3.21 | 2000 | 0.3422 | 0.3519 | 0.1111 | |
|
| 0.4282 | 3.85 | 2400 | 0.3261 | 0.3450 | 0.1071 | |
|
| 0.3951 | 4.49 | 2800 | 0.3201 | 0.3325 | 0.1048 | |
|
| 0.3619 | 5.13 | 3200 | 0.3167 | 0.3296 | 0.1030 | |
|
| 0.345 | 5.77 | 3600 | 0.3157 | 0.3210 | 0.1013 | |
|
| 0.338 | 6.41 | 4000 | 0.3051 | 0.3143 | 0.0982 | |
|
| 0.3155 | 7.05 | 4400 | 0.3059 | 0.3154 | 0.0986 | |
|
| 0.3057 | 7.69 | 4800 | 0.3035 | 0.3137 | 0.0972 | |
|
### Framework versions |
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.0 |