0504LayerAnalysis31
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1092
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 60
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.7445 | 0.09 | 10 | 2.6015 |
2.3433 | 0.18 | 20 | 1.7482 |
1.2286 | 0.27 | 30 | 0.5531 |
0.4068 | 0.36 | 40 | 0.2940 |
0.2388 | 0.45 | 50 | 0.1832 |
0.1922 | 0.54 | 60 | 0.1407 |
0.1518 | 0.63 | 70 | 0.1263 |
0.1415 | 0.73 | 80 | 0.1206 |
0.1372 | 0.82 | 90 | 0.1196 |
0.1298 | 0.91 | 100 | 0.1149 |
0.1334 | 1.0 | 110 | 0.1143 |
0.13 | 1.09 | 120 | 0.1131 |
0.1306 | 1.18 | 130 | 0.1149 |
0.128 | 1.27 | 140 | 0.1125 |
0.1309 | 1.36 | 150 | 0.1118 |
0.1237 | 1.45 | 160 | 0.1124 |
0.1239 | 1.54 | 170 | 0.1104 |
0.1267 | 1.63 | 180 | 0.1095 |
0.1243 | 1.72 | 190 | 0.1172 |
0.1279 | 1.81 | 200 | 0.1093 |
0.1245 | 1.9 | 210 | 0.1100 |
0.1189 | 1.99 | 220 | 0.1098 |
0.1236 | 2.08 | 230 | 0.1101 |
0.1209 | 2.18 | 240 | 0.1094 |
0.1209 | 2.27 | 250 | 0.1089 |
0.1297 | 2.36 | 260 | 0.1087 |
0.1224 | 2.45 | 270 | 0.1086 |
0.1151 | 2.54 | 280 | 0.1092 |
0.1185 | 2.63 | 290 | 0.1096 |
0.1211 | 2.72 | 300 | 0.1092 |
0.1235 | 2.81 | 310 | 0.1092 |
0.1243 | 2.9 | 320 | 0.1092 |
0.1272 | 2.99 | 330 | 0.1092 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/0504LayerAnalysis31
Base model
microsoft/phi-2