G0515HMA10H
This model is a fine-tuned version of google/gemma-2b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1427
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.2377 | 0.09 | 10 | 2.9659 |
2.85 | 0.18 | 20 | 2.5531 |
2.2228 | 0.27 | 30 | 1.8111 |
1.4488 | 0.36 | 40 | 1.0090 |
0.7045 | 0.45 | 50 | 0.3525 |
0.2451 | 0.54 | 60 | 0.1706 |
0.1632 | 0.63 | 70 | 0.1538 |
0.1549 | 0.73 | 80 | 0.1508 |
0.1449 | 0.82 | 90 | 0.1510 |
0.1466 | 0.91 | 100 | 0.1481 |
0.1498 | 1.0 | 110 | 0.1498 |
0.1444 | 1.09 | 120 | 0.1492 |
0.1455 | 1.18 | 130 | 0.1488 |
0.1457 | 1.27 | 140 | 0.1472 |
0.1491 | 1.36 | 150 | 0.1466 |
0.1427 | 1.45 | 160 | 0.1491 |
0.1444 | 1.54 | 170 | 0.1473 |
0.1456 | 1.63 | 180 | 0.1471 |
0.1462 | 1.72 | 190 | 0.1493 |
0.1459 | 1.81 | 200 | 0.1477 |
0.1479 | 1.9 | 210 | 0.1468 |
0.1475 | 1.99 | 220 | 0.1467 |
0.1446 | 2.08 | 230 | 0.1464 |
0.1403 | 2.18 | 240 | 0.1453 |
0.1423 | 2.27 | 250 | 0.1450 |
0.1432 | 2.36 | 260 | 0.1447 |
0.142 | 2.45 | 270 | 0.1447 |
0.1407 | 2.54 | 280 | 0.1444 |
0.141 | 2.63 | 290 | 0.1438 |
0.1394 | 2.72 | 300 | 0.1430 |
0.1417 | 2.81 | 310 | 0.1427 |
0.141 | 2.9 | 320 | 0.1427 |
0.1429 | 2.99 | 330 | 0.1427 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for Litzy619/G0515HMA10H
Base model
google/gemma-2b