metadata
license: mit
base_model: microsoft/phi-2
tags:
- generated_from_trainer
model-index:
- name: V0309O6
results: []
V0309O6
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0631
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 20
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9549 | 0.09 | 10 | 0.7661 |
0.3073 | 0.17 | 20 | 0.1105 |
0.1318 | 0.26 | 30 | 0.0849 |
0.1149 | 0.34 | 40 | 0.0834 |
0.1155 | 0.43 | 50 | 0.0803 |
0.1048 | 0.51 | 60 | 0.0807 |
0.0963 | 0.6 | 70 | 0.0808 |
0.0992 | 0.68 | 80 | 0.0777 |
0.0893 | 0.77 | 90 | 0.0731 |
0.1061 | 0.85 | 100 | 0.0747 |
0.098 | 0.94 | 110 | 0.0711 |
0.095 | 1.02 | 120 | 0.0699 |
0.0908 | 1.11 | 130 | 0.0743 |
0.0874 | 1.19 | 140 | 0.0734 |
0.083 | 1.28 | 150 | 0.0682 |
0.0823 | 1.37 | 160 | 0.0701 |
0.0812 | 1.45 | 170 | 0.0684 |
0.078 | 1.54 | 180 | 0.0683 |
0.0763 | 1.62 | 190 | 0.0671 |
0.0763 | 1.71 | 200 | 0.0650 |
0.08 | 1.79 | 210 | 0.0634 |
0.0686 | 1.88 | 220 | 0.0650 |
0.0685 | 1.96 | 230 | 0.0638 |
0.074 | 2.05 | 240 | 0.0644 |
0.0646 | 2.13 | 250 | 0.0630 |
0.0669 | 2.22 | 260 | 0.0675 |
0.061 | 2.3 | 270 | 0.0675 |
0.0672 | 2.39 | 280 | 0.0635 |
0.0687 | 2.47 | 290 | 0.0625 |
0.0656 | 2.56 | 300 | 0.0625 |
0.0738 | 2.65 | 310 | 0.0626 |
0.062 | 2.73 | 320 | 0.0628 |
0.0622 | 2.82 | 330 | 0.0631 |
0.0632 | 2.9 | 340 | 0.0630 |
0.0644 | 2.99 | 350 | 0.0631 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1