V0424HMA16
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0630
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.746 | 0.09 | 10 | 0.3673 |
0.2037 | 0.18 | 20 | 0.1211 |
0.114 | 0.27 | 30 | 0.0905 |
0.0938 | 0.36 | 40 | 0.0792 |
0.0859 | 0.45 | 50 | 0.0722 |
0.0876 | 0.54 | 60 | 0.0710 |
0.0789 | 0.63 | 70 | 0.0719 |
0.0749 | 0.73 | 80 | 0.1001 |
0.0804 | 0.82 | 90 | 0.0677 |
0.0825 | 0.91 | 100 | 0.0680 |
0.0775 | 1.0 | 110 | 0.0645 |
0.055 | 1.09 | 120 | 0.0651 |
0.0623 | 1.18 | 130 | 0.0785 |
0.0682 | 1.27 | 140 | 0.0706 |
0.0617 | 1.36 | 150 | 0.0675 |
0.073 | 1.45 | 160 | 0.0681 |
0.0677 | 1.54 | 170 | 0.0654 |
0.0639 | 1.63 | 180 | 0.0646 |
0.0662 | 1.72 | 190 | 0.0958 |
0.0776 | 1.81 | 200 | 0.0721 |
0.0609 | 1.9 | 210 | 0.0737 |
0.0596 | 1.99 | 220 | 0.0694 |
0.0407 | 2.08 | 230 | 0.0725 |
0.0401 | 2.18 | 240 | 0.0654 |
0.0424 | 2.27 | 250 | 0.0617 |
0.0361 | 2.36 | 260 | 0.0695 |
0.0364 | 2.45 | 270 | 0.0696 |
0.0315 | 2.54 | 280 | 0.0699 |
0.0315 | 2.63 | 290 | 0.0673 |
0.0345 | 2.72 | 300 | 0.0638 |
0.0369 | 2.81 | 310 | 0.0635 |
0.0339 | 2.9 | 320 | 0.0631 |
0.0378 | 2.99 | 330 | 0.0630 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/V0424HMA16
Base model
microsoft/phi-2