V0424HMA26
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0706
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5067 | 0.09 | 10 | 0.1397 |
0.1485 | 0.18 | 20 | 0.1057 |
0.1038 | 0.27 | 30 | 0.0912 |
0.0895 | 0.36 | 40 | 0.0768 |
0.0832 | 0.45 | 50 | 0.0716 |
0.085 | 0.54 | 60 | 0.0725 |
0.0765 | 0.63 | 70 | 0.0681 |
0.0702 | 0.73 | 80 | 0.0656 |
0.0736 | 0.82 | 90 | 0.0668 |
0.0792 | 0.91 | 100 | 0.0605 |
0.0774 | 1.0 | 110 | 0.0694 |
0.0591 | 1.09 | 120 | 0.0754 |
0.0665 | 1.18 | 130 | 0.0804 |
0.0707 | 1.27 | 140 | 0.0676 |
0.0618 | 1.36 | 150 | 0.0694 |
0.0661 | 1.45 | 160 | 0.0681 |
0.0584 | 1.54 | 170 | 0.0812 |
0.0617 | 1.63 | 180 | 0.0667 |
0.0519 | 1.72 | 190 | 0.0681 |
0.0666 | 1.81 | 200 | 0.0688 |
0.0553 | 1.9 | 210 | 0.0698 |
0.0513 | 1.99 | 220 | 0.0691 |
0.0371 | 2.08 | 230 | 0.0675 |
0.0325 | 2.18 | 240 | 0.0770 |
0.0276 | 2.27 | 250 | 0.0784 |
0.0317 | 2.36 | 260 | 0.0759 |
0.0314 | 2.45 | 270 | 0.0726 |
0.0291 | 2.54 | 280 | 0.0684 |
0.0262 | 2.63 | 290 | 0.0697 |
0.0264 | 2.72 | 300 | 0.0712 |
0.0322 | 2.81 | 310 | 0.0711 |
0.0289 | 2.9 | 320 | 0.0707 |
0.0304 | 2.99 | 330 | 0.0706 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/V0424HMA26
Base model
microsoft/phi-2